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Abstract 
This study investigates size of the bimodality to illustrate the gap between two modes/peaks 

in a bimodal distribution. To get this goal, one of the definite integral (i.e. Trapezoidal rule) is used 
on the mixture of normals (the mixture of one normal and the second one standard normal) with the 
selected parameter values of mean, mixing proportion and standard deviation. From the results, an 
increase of size of bimodality is identified if mean increases while all other parameters remain con-
stant. A similar situation of increasing pattern of bimodality size has been observed when parametric 
values of mixing proportion increases (varies) while keeping other parameter values constant. How-
ever, a fraction changed is revealed in the size of bimodality if values of mean and mixing propor-
tion are kept constant while standard deviation varies. 
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Introduction  
Researchers in a various areas are facing challenges i.e. not clear about the presentation of 

data where it is unimodal or bimodal e.g Knoll and Semikhatov (1998); Johnson and Yantis (1995); 
Roeder (1996); Sussman (1999); Volbrecht, Nergerand Randell (1997); etc.). Similarly, a lot of stu-
dies in social, health, numerical and natural sciences point out the same issue of bimodality. It is 
complicated to decide whether the data set follows a normal distribution (in unimodal case) or 
mixture of normals (in bimodal case) stated Frankland and Zumbo (2002). Mostly, it is anticipated 
that the data belongs to normal or mixture of normal distributions but this assumption is not neces-
sary in each case (Yellot, 1971). The significance of the research for modality in statistics has been 
designated by Murphy (1964). Lindsay (1995) documented that theories about Mixture of distribu-
tions have been commonly used in social sciences. Robertson and Fryer (1969) described that, as 
two normal distributions joined collectively and formed another shape of a distribution which de-
pends upon their parameters values. Schilling and Watkins (2002) documented that mixture of two 
normal distributions automatically lead to a bimodal distribution.  

A likelihood ratio function for normal distribution and mixtures of normal distributions 
called coefficient of bimodality was used by Ashman and Bird (1994). In this connection Frankland 
and Zumbo (2002) introduced SPSS program for the distinction among unimodal normal distribu-
tion and a bimodal mixture of normal distributions. Choonpradub and McNeil (2005) detected the 
bimodality on the basis of augmentation in traditional boxplot by thickening the two ends of the box.  

Using the same idea as an experiment this study considered mixture of normals (one stan-
dard normal and the second is normal) to find the size of bimodality with the help of its parameters. 
Also to check how these parameters effect the size of bimodality.  

This study uses mixture of two normal distributions as data generating process “DGP” for 
checking bimodality size. Let ݔଵ  is the random sample from the population i.e. first normal distribu-
tion with mean “ߤଵ” and variance  ߪଵଶ and  ݔଶ is the random sample from the population i.e. second 
normal distribution with mean“ߤଶ” and variance  ߪଶଶ respectively. 
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Z = ݔ݌ଵ + (1−݌)ݔଶ                                                                                     (1) 
Where “Z” is known as mixture of normal distributions with mixing probability “݌” within 

the interval (0, 1). 
 
Bimodality Size  
In this study size of the bimodality illustrate the gap or area between two modes in a bimodal 

distribution. To calculate the 1bimodality size we applied definite integrals i.e. Trapezoidal rule. On 
the other hand Riemann sums has low accuracy because it distributed the concern area in small rec-
tangles as compare to Trapezoidal or Simpson’s rules which distribute the area in various trape-
ziums. This study consider ߤଵ= 0, ߪଵଶ= 1 (because of one standard normal distribution) and various 
values of other parameters i.e .  ݌ ଶଶߪ ଶ= (1, 2, 3, . . . . . . ,10) andߤ  ,(0.9 ,. . . . .,0.3 ,0.2 ,0.1)= = (0.1, 0.2, 0.3, . . . . . . . , 0.9). 

Trapezoidal rule 
It is not easy to estimate the integrals through analytical techniques. But, for the same ap-

proximate area we have used a numerical technique called Trapezoidal rule. The mathematical pro-
cedure of this technique is as follows;  ׬ ݂ሺݖሻ݀ݖఓଶఓଵ = 

∆௛ ଶ  (2)                   [(௡ݖ + (௡ିଵݖ + . . . . . . + ଶݖ + ଵݖ)଴ + 2ݖ]

Where ݖ଴, ݖ௠are lower and upper limits respectively, hereݖ଴= ߤ଴andݖ௠= ߤଶ,  ∆ℎ = ଶߤ − ଵ݊ߤ  

“n” is the total number of trapeziums or sub-intervals of same size with (n+1) points. The 
accuracy is directly proportional to “n” and inversely proportional to“∆ℎ”. 

 

 
Figure 1. Size of the bimodality between two modes 

 
Through any one of the definite integrals the bimodality size can be calculated. The surface 

which is above the bimodal distribution connected directly with two modes is the bimodality size 
(see Figure 1). Joining of the space which is calculated from numerical method and size makes a 
trapezoid. The heights of the two modes are denoted by “ݖ଴ and ݖ௠”. Where the distance (ݖ଴ −  (௠ݖ

                                                 
1Bimodality size also describes distance or norm between two peaks/modes in a bimodal distribution. 
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is the vertical line of the right angle triangle. Similarly the distance ‘m’ is the length and ݖ௠ is the 
width of the rectangle. In this study the bimodality size is estimated as the distinction between 2area 
of the right angle triangle and the area through Trapezoidal rule. Figure 1 show both of the modes in 
a bimodal distribution where the area within these modes is the size of the same distribution. Fol-
lowing cases explains the bimodality size which influenced by the parameters of bimodal distribu-
tion. 

Effect of mean “μ2” in mixture of normal 
As the mixture contains one standard normal and second one is normal, so we have changed 

the three parameters (i.e. μ2, ݌ and ߪଶ).This case possessed with varying values of “μ2” while other 
two parameters have kept fixed. 

 

 
Figure 2. Size of the mixture of normal with various values of “μ2” 

 
Figure 2 (A) describes the bimodality size for different values of ߤଶ= (2, 3, . . . . , 8) and fix-

es ߪ ,0.1 =݌ଶ = 0.7. In this case the bimodality size increases as the value of ߤଶ increases while 
keeping other parameter values as constant. For the same values of mean and combination of 
 .result remains same {(0.1, 0.9) ,(0.2, 0.8) ,(0.1, 0.8)} =(ଶߪ ,݌)

Figure 2 (B) shows the bimodality size for different values of ߤଶ= (2, 3, . . . . , 6) and ߪ ,0.3 =݌ଶ = 0.8. Here, the bimodality size decreases as parametric values of ‘ ߤଶ’ increases while keeping 

                                                 
2 Area of the right angle triangle= 

௡ሺ௭బି ௭೘ሻଶ  
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other parameters (i.e. ߪ,݌ଶ) constant. For the same values of mean and combination of (ߪ ,݌ଶ)= (0.2, 
0.9) the result remains unchanged. 

Similarly, Figure 2 (C) observes the bimodality size for the values of ߤଶ= (2, 3, . . . . , 10) 
and ߪ ,0.4 =݌ଶ = 0.9. In this situation the bimodality size increases by increasing the 
ter ߤଶwhile keeping other parameters constant. At the same values of parameter mean, and 
combination of (ߪ,݌ଶ)= {(0.2, 0.9), (0.6, 0.9)} the result remains same. 

Figure 2 (D) identifies the bimodality size for the values of ߤଶ= (2, 3, . . . . , 6) and ߪ ,0.3 =݌ଶ = 0.8. Here, the bimodality size decreases fractionally as the parameter mean values increases 
while keeping other parameters constant. 

Effect of mixing proportion alpha “࢖” in mixture of normals  
As we change the second parameter called mixing proportion ‘݌’and fix the remaining two 

parameters (i.e. ߤଶ, ߪଶ) then Figure 3 explains behavior of bimodality size. 
 

 
 
 
 
 

 
 
 
 

 
 
 

Figure 3. Size of the mixture of normal with various values of “࢖” 
 

Figure 3 (A) shows the bimodality size for the values of (0.9 , . . . .,0.3 ,0.2 ,0.1) =݌ and ߤଶ= 
-in ”݌“ ଶ= 0.1. In this case the bimodality size gradually decreases as the values of parameterߪ ,1
creases while keeping other parameters constant. For the same values of mixing proportion and 
combination of (ߤଶ, ߪଶ)= (1, 0.2) the results remain same. Figure 3 (B) describes the bimodality size 
for different values of (0.5 , . . . . ,0.3 ,0.2 ,0.1) =݌ and ߤଶ= 2, ߪଶ = 0.5. Here, the bimodality size 
decreases by increasing the parameter, mixing proportion‘݌’ while keeping other parameters 
(i.e. ߤଶ, ߪଶ) constant. For the same values of “݌” and combination of (ߤଶ,ߪଶ)= (0.2, 0.9) the result 
remains unchanged. 
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Next, Figure 3 (C) identifies the bimodality size for the values of (0.5 , . . . . ,0.2 ,0.1) =݌ 
and ߤଶ= 3, ߪଶ = 0.8. In this situation the bimodality size decreases by increasing the parameter “݌” 
while keeping other parameters constant. Figure 3 (D) shows the bimodality size for the values of (0.5 , . . . . ,0.2 ,0.1) =݌ and ߤଶ= 8, ߪଶ = 0.9.At this time the bimodality size decreases by increasing 
the parameter “݌” while keeping other parameters constant. For the same values of “݌”and combi-
nation of (ߤଶ, ߪଶ)= (6, 0.9) the result remains same as Figure 3 (D). 

Effect of standard deviation “࣌૛” in mixture of normals 
In this subsection the parametric values of standard deviation “ߪଶ” are changed while the 

values of remaining ߤଶ and “݌” are kept as constant to evaluate the bimodality size. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Size of the mixture of normal with various values of “࣌૛” 
 

Figure 4 (A) describes the bimodality size for different values of ߪଶ= (0.4, 0.5, 0.6, . . . . , 
0.9) and fixedߤ ,0.1 =݌ଶ =2. In this case the bimodality size decreases for first three values 
of ߪଶ then increases with minimum margin as the parametric value of ߪଶ increases while keeping 
other parameter values constant. For the same values of σଶ and combination of (ߤଶ,  ,3) ,(0.2 ,2) =(݌
0.2) the results remain same. Figure 4 (B) shows the bimodality size for different values of ߪଶ= (0.5, 
0.6, . . . . , 0.9) and fixed ߤ ,0.1 =݌ଶ = 3. Here the bimodality size decreases fractionally by increas-
ing the parameter “ߪଶ” while adjust other parameters (i.e.ߤ ,݌ଶ) constant.  

Next Figure 4 (C) observes the bimodality size for the values of ߪଶ= (0.5, 0.6, . . . . , 0.9) and 
fixed ߤ ,0.3 =݌ଶ = 3. In this situation the bimodality size increases fractionally by increasing the 
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parameter “ߪଶ” while keeping other parameters constant. At the same values of σଶ and combination 
of (ߤ ,݌ଶ)= (0.2, 2) the result remains same. Figure 4 (D) identifies the bimodality size for the values 
of ߪଶ= (0.5, 0.6, . . . . , 0.9) and fixedߤ  ,0.4 =݌ଶ = 3. Here the bimodality size increases slightly by 
increasing the parameterߪଶ while keeping other parameters constant. It means that the parameter 
 ଶ” has very low effect on the bimodality size as compare to other parameters. At the same valuesߪ“
of ߪଶ and combination of (ߤ ,݌ଶ)= (0.4, 2) the results remain same as have been observed for Figure 
4 (C). 

 
Conclusion 
The analysis of this study determined that in mixture of normals, the parameter mean“ߤଶ” 

affected the bimodality size with the variation i.e. 7% to 10% approximately. For mixing probability 
i.e. 30%≤ ݌ ≤ 50% the size decreases otherwise increases. Similarly, in the second case the para-
meter “݌” also affected the size with the variation i.e. 2% to 5% approximately. The bimodality size 
decreases as the parameter mixing probability increases. In third case, the parameter standard devia-
tion“ߪଶ” diverges the bimodality size fractionally about 0.3% to 0.5%. Mostly, the bimodality size 
decreases as the parameter mixing probability increases. So, it is investigated that the bimodality 
size changes often on the basis of two parameters of mixture of normals (i.e. mean and mixing pro-
portion). 

This study can be extended in future to use the other definite integrals for the same purpose. 
Also these integrals can be compared in case of bimodality. 
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