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Abstract

We consider the problem of selling a fixed capacity or inventory of items over a finite selling
period. Earlier research has shown that using a properly set fixed price during the selling period is
asymptotically optimal as the demand potential and capacity grow large and that dynamic pricing
has only a secondary effect on revenues. However, additional revenue improvements through
dynamic pricing can be important in practice and needs to be further explored. We suggest two
simple dynamic heuristics that continuously update prices based on remaining inventory and time in
the selling period. The first heuristic is based on approximating the optimal expected revenue
function and the second heuristic is based on the solution of the deterministic version of the
problem. We show through a numerical study that the revenue impact of using these dynamic
pricing heuristics rather than fixed pricing may be substantial. In particular, the first heuristic has a
consistent and remarkable performance leading to at most 0.2% gap compared to optimal dynamic
pricing. We also show that the benefits of these dynamic pricing heuristics persist under a periodic
setting. This is especially true for the first heuristic for which the performance is monotone in the
frequency of price changes. We conclude that dynamic pricing should be considered as a more
favorable option in practice.
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Introduction

Pricing is one of the most important decisions that impact a firm's profitability. The effect of
pricing is more profound for companies in transportation services sector where it is difficult to
change capacities in the short term and variable costs are small. Recognizing this, airlines, rental car
companies and other firms in transportation and service industries have begun to implement
techniques to improve their pricing and allocation decisions since mid-1980s. Following the success
of these practices, now broadly called revenue management, pricing decisions are becoming more
tactical and dynamic pricing is increasingly being adopted in retail and other industries.

In a seminal work, Gallego and van Ryzin (1994) (GVR hereafter) study the problem of
dynamically pricing a fixed stock of items over a finite horizon under uncertain demand. An
important result in GVR is that keeping the price constant (at a level determined by the deterministic
solution of the problem) throughout the horizon has a bounded worst -case performance and is
asymptotically optimal as the expected sales goes to infinity. GvR also shows numerically that when
the demand function is exponential, fixed-price policies have good performance even when the
expected sales is small. The authors conclude that" ... offering multiple prices can at best capture
only second-order increases in revenue due to the statistical variability in demand". Since 1994, a
large and important body of literature in operations research has evolved to offer solutions and study
different variants of the problem studied in GvR. (Recent examples include research that study the
impact of product substitution (Kim and Bell 2011), consumer inertia (Zhao, Tian, and Li, 2011) and
competition and price uncertainty (Tsai and Hung, 2009) on dynamic pricing. Although GvR
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caution that these second-order increases in revenue may be significant in practice, revenue
management literature has remained relatively silent on quantifying the benefits of dynamic pricing
over fixed-price policies. This is primarily due to practical convenience: computing optimal
dynamic prices is difficult (if not impossible) and changing prices frequently may be undesirable or
costly.

Our primary aim in this paper is to reemphasize the power of dynamic pricing under
resupply restrictions. We suggest two computationally simple dynamic pricing heuristics and show
that the performance of these heuristics can be significantly better than that of fixed-price policies.
In particular, we first propose the revenue approximation heuristic which is based on approximating
the expected revenue of the optimal policy in order to calculate the price to be applied for a given
remaining inventory and remaining time in the selling season. The approximation is a combination
of a lower bound based on the homogeneity of the optimal expected revenue and an upper bound
based on the deterministic version of the problem. The second heuristic we suggest is the dynamic
run-out rate heuristic which adaptively uses the solution of the deterministic version of the problem.
We carry out an extensive numerical study which shows that the revenue gap between fixed-price
and optimal dynamic pricing policies may be substantial and this gap worsens when the season
length (or demand potential) increases. We show that the two heuristics that we propose close a
significant portion of this gap and lead to near-optimal expected revenues. We also show that most
of the benefits of dynamic pricing heuristics are sustained by changing the prices periodically rather
than continuously. For the first heuristic, the performance is monotone in the number of periods
used. Our analysis and results are confined to the benefits of dynamic pricing under "normal"
statistical fluctuations in demand. The benefits of dynamic pricing will be more pronounced when
the demand is non-homogeneous or when the demand function or distribution is not known in
advance.

Among the relevant works in the literature, Gallego and van Ryzin (1997) extend their model
to the multiple products case and demonstrate that two heuristics that are similarly based on the
solution of the deterministic version of the problem are asymptotically optimal. Cooper (2002)
proves asymptotical convergence results that are stronger than those in GvR and Gallego and van
Ryzin (1997). Cooper (2002) also presents an example where updating prices (more precisely, the
allocations in Cooper's model) by resolving the deterministic problem throughout the horizon, a
widely applied approach in practice, may perform worser than applying the static policy. Secomandi
(2008) establishes the conditions under which resolving does not deteriorate the performance of
heuristic pricing policies. Maglaras and Meissner (2006) show that resolving heuristics are also
asymptotically optimal as starting inventory and expected sales both go to infinity and Cooper's
example should not persist in problems with large demand potential. There is limited research on
developing dynamic pricing heuristics and those that are suggested are usually based on
deterministic formulations. The main contribution in this paper is to propose two new heuristics that
are simple and computationally feasible. While dynamic run-out rate heuristic also uses the
deterministic solution in feedback form, revenue approximation heuristic is based on approximating
the revenue-to-go function using a homogeneity assumption.

The literature also does not provide enough guidance on nonasymptotic or average
performance of heuristic policies and the factors that moderate their performance. In GvR, the
authors use the exponential price sensitivity of demand and conduct a small numerical experiment to
study the performance ofthe fixed-price policy against the optimal dynamic policy. It is shown that
the revenue gap between the fixed-price and dynamic pricing policies is smaller than the theoretical
bounds and gets smaller as starting inventory increases. However, Zhao and Zheng (2000) show
that the revenue gap is more significant when the constant demand elasticity function is used rather
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than the exponential demand function. Zhao and Zheng (2000) also show that the revenue gap is
rather insensitive to the elasticity of demand and there are diminishing marginal returns of dynamic
pricing policies to the number of prices used. Maglaras and Meissner (2006) conduct a numerical
study on the multiproduct pricing problem with a linear demand function. Their results show that the
fixed-price policy's regret over the optimal dynamic policy can be substantial and resolving the
deterministic problem periodically during the horizon can offer significant benefits. In Section 3, we
provide the results of an extensive numerical experiment to study the performance of heuristic
pricing policies. The results show that the regret of fixed-price policies can be important in practice
and dynamic pricing heuristics can be used to generate near-optimal results.

Table 1. The demand functions that are used in the analysis

A(P) r(1) r(d) A P’
Exponential ae_p In (%) Aln (%) g 1
Linear a_bp ch—A (O(_b%)/‘{ % %
1 a
ae-PP pil (Z A, (a ae~W/e-1 W (1/7e) + 1
Logit - Zln (— — 1)
1+ebp | —1) (|2 M 1+ e Whre-1 b

The remainder of this paper is organized as follows. In Section 2, we propose the revenue
approximation and dynamic run-out rateheuristics.

In Section 3, we report the results of a detailed numerical study that quantifies the regrets of
fixed-price and dynamic pricing heuristics over the optimal dynamic pricing policy. This section
also analyzes the effect of periodic price changes on the performance of dynamic pricing heuristics.

Dynamic pricing heuristics

We first state our problem following the notation in GvR and provide some preliminary
results. A given stock of n items is to be sold over a finite season of length t. The demand rate
depends only on the current price p through a function A(p), whose inverse isp(1). The revenue rate,
denoted byr(d) = Ap(Ad)is assumed to satisfylim;_o7(4) =0, and is continuous, bounded,
concave and has a least maximizer denoted by A * = min{1: r(1) = max = r(1)}(the
corresponding price is *=p(1")).

There exists a null price denoted by P for which lim,_, A(p) = 0. The price is selected
from a set of allowable prices P — IR + U P,. The corresponding set of allowable rates is denoted
by A = {A(p) : p € P}.

For the numerical examples and experiments in this paper, we use three different functions to
model the price-demand relationship: exponential, linear and logit demand functions. These are
some of the most commonly used demand functions in theory and practice [7,13] and are given in
Tablel.

The demand is stochastic and modeled as a Poisson Process.
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The firm controls the intensity at every instant by using a price in P. The problem is to
determine the pricing policy that maximizes the total expected revenue over the season denoted
byJ*(n,t).

For a given remaining time s and inventory x in the season, GVR show that the optimal
expected revenue-to-go (and the corresponding optimal price at that instant) can be found by solving
the following system of differential

D ) - 40" (9) S = 1))
s A

For all
x=12,....,n.

with boundary conditions /*(x,0) = O for all x = 1,2,...,nand J*(0,s) = 0 for all s <
t. GVR also prove the existence of a unique solution to (1) along with monotonicity of the optimal
expected revenue (and corresponding demand rates and prices) with respect to remaining inventory
and remaining time in the season. Ger. state that obtaining a solution to (1) is quite difficult - if not
impossible - for arbitrary demand functions. In addition, implementing a pricing policy that would
change the price continuously over time may be difficult in practice. Therefore, they suggest the use
of a heuristic pricing policy in which the price is constant for the entire season. The fixed-price (FP)
heuristic that they develop uses the solution of the deterministic version of the problem and sets the
price Atp = p(1) = p(min{A° A*}), where A° = n/tis the run out rate and A*is the revenue
maximizing rate. One can improve upon this by using the optimal fixed-price (OFP) heuristic and
setting the price to P_OFP = argmzflprE[min{n, Ny (t)}]where Ny, (t)is a Poisson random

variable with rate A(P)t. GvR shows that both heuristic are asymptotically optimal as nand
A*t(or demand potential) both go to infinity. In the remainder of the section, we suggest two
computationally simple heuristics that can be used to dynamically adjust prices.

Revenue approximation heuristic

The main idea behind our first heuristic approach is to approximate the optimal expected
revenue function J* with a proper function, say J, and use this approximation in (1) to find

Ara(x,8) = argsup,{r(A) — A((x,s) — G — 1,))}.

This is similar to the approximate dynamic programming approach used to calculate bid
prices for network revenue management by approximating the value function in Bellman
equation. Zhang and Cooper (2006) used a similar approach to determine prices in a revenue
management problem with substitutable flights. Our approach differs from theirs as we use a
new way to approximate the value function and consider a continuous time dynamic program
(thus use approximation in the Hamilton-Jacobi optimality condition). We first develop a lower
bound and an upper bound for the value function and then use a combination of these bounds to
approximate the value function.

Lower bound

The lower bound we develop is based on the following intuitively appealing argument:
The optimal expected revenue that can be obtained by selling x units of remaining inventory
over a remaining season of length s is approximately equal to x times the optimal expected
revenue that can be obtained by selling one unit of inventory over a season of length x/s, i.e.,
Ju(X,S) = xJ(1,5/x).

This approximation would be exact only if the optimal expected revenue function was
positively homogeneous, i.e., J*(x,s) = x/*(1,s/x). As we show next, this is not the case and
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the expected revenue obtained through this approximation is a lower bound for the optimal
expected revenue.
Theoreml.

Jus) =2 (1L3) < J'(x5), Vx>0,

Proof. Consider the pricing policy for x units of inventory to be sold over a remaining
season of length s. The remaining season is split into x periods, each having length s/x. In each
of these periods, one additional inventory is put on sale along with any leftover inventory from
the previous period. In each period, the intensity at time w is set to A*(1,(s/x) — w).Since
A*(1,s/x)is the expected revenue of this policy in one of these periods without considering the
leftover inventory, there is a positive probability (which is equal to or larger than e™x()where
m*(s) = [ OS ™ (1, (%) — W) dw) that there will be leftover inventory at the end of a given
period, and the prices are non-zero, the expected revenue resulting from this pricing policy is at
least xJ*(1,s/x).

Fig. 1 shows the percentage gap between the lower bound and the optimal solution given
by

X]*(x, S) _jH(xr S)
J*(x,s)
for the exponential, linear, and logit demand functions for x = 2,5,10. We take a = e for
1
the exponential, (a,b) = (2,1) for the linear and (a,b) = (1 + e_W(E)_l, W(l/e)+ 1) for the
logit demand functions leading to p* = 1" = 1 for all demand functions.
The gaps tend to be small for small s, but increase rapidly to their peak at moderate x
values and then stabilize. We see a similar pattern for different parameter values as well.
The lower bound requires the calculation of /*(1,s) using a single differential equation

9J*(1,s) _ sup g
UCD _ (2 — A (1L,5)).

100

Remember that obtaining the optimal policy requires solving the system of differential
equations given in (1). Therefore, obtaining the lower bound is much simpler compared to the
optimal policy. For x = 1, the lower bound coincides with the optimal expected revenue, i.e.,

Ju@,s) =J"(1,s).

Upper bound
The upper bound we use is the solution of the problem in which the demand rates are
deterministic. In this case, as is shown in [1], we have:

Ip(x,s)=r (/T(x, s)) s = r(min{A,(x,s),1*})s,

wherel, (x,s) = x/sis the run-out rate. As shown below, [ (x, s)constitutes an upper
bound for the optimal revenue/*(x, s).

Theorem 2 (Gallego and van Ryzin[ 1, Theorem 2]).

J*(x,5) < Jp(x,5), Vx>0.

Approximation

Since we establishjy (x,s) < J*(x,s) < Jp(x,s) in Theorems 1 and 2, we can obtain better
approximations for the optimal revenue through a combination offy (x, s)and], (x, s),
JCx,s) = 0(x,8)]u(x,s) + (1= 6(x,5)]p(x,5).

In principal, 8(x,s) can be fine-tuned for a given demand function, starting inventory and
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length of the horizon. For example, Fig. 2 shows the optimal revenue as well as the upper and lower
bounds for the linear demand function with a = 2 and b = 1. As one can observe, the lower
bound is tighter than the upper bound for small values of starting inventory, but the upper bound
better approximates the optimal revenue for larger values of starting inventory. In Section 3, we use
the weights 8(x,s) = 1/+vX in a detailed numerical study. This leads to a heuristic performance
within or around 0.2% of the optimal revenue for all problems we consider.

We now explain how one can compute the intensity and corresponding prices for the revenue
approximation heuristic for the three demand functions used in this paper.

Exponential demand function: For the exponential demand function, using (2), we get

a
Ara(x,s) = el+j(x,s)—J(x-1,5)

For the exponential demand function, J*(1,s) = In(1 + 1*S) (see GVR). Therefore, we
have J;(x,s) = xIn(1 + A*s/x). In addition,

Jp(x,s) = min{x, 2*s}In(as/min{x, 1*s}). Using these in (4),
. a

, ifx=1
min{1,1*s}(1-6(1,5))
e(l + 1*5)9(1‘5) (min?ls,l*s})
A X,S) =+ xoy (x—1)0(x,5) min{x—l,/l*s}(l—e(x—l,s))
RA( ) a (1 + A s) ( as )

min{x—1,1*s}

x—1

ifx =2,

PERNCIER) as min{x—1,2*s}(1-0(x—1,5))
\ € (1 t ) (min{x,/l*s})

where 1* = a/e. The corresponding price is Pr4(X,S) = In(a/ Ag4(x,s)). Note that the
optimal price and intensity can be calculated in closed form. The optimal price is an increasing
(decreasing) function of the remaining time (inventory) in the season. Correspondingly, optimal
intensity is a decreasing (increasing) function of the remaining time (inventory) in the season.

Toosit et —m—

X e x— 8 — = — -k — 10

o 10 £ 30 a0
-

Figure 1. Percentage gap of the lower bound for p* = A* = 1.
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Figure 2. Upper and lower bounds for the optimal revenue for the linear demand function
with a=2 and b=1

Linear demand function: For the linear demand function, using (2), we get

a b, -

Iralas) = 5 == (Jos) —Jx —1,9).

In order to find J(x, s), one needs to first calculate/*(x, s). By solving (3), we get,

“(1,5) = =22
J(4,s) = b(as+4)

Therefore, we have J(x,s) = a?sx/b(as + 4x).
In addition, [, (x,s) = min{x, A*s}(as — min{x, 1*s})/bswhereA* = a/2. Then, we get

(a _a’s6(1,s) min{l'%} (as ~ min {1' %}) (1= 6G.5) ifx=1

2 2(as+4) 2s
a a’s8(x,s)x a’sf(x—1,5)(x—1)

2 2(as + 4x) 2(as + 4(x — 1))

Ara(%,5) = 1 min {x, %} (as — min {x, %}) (1-06(x5))
- 2s
L +min{x - 1,?} (as - min{ZxS— 1,%}) (1-0(x-1,5)) ifx>1

The corresponding price isPg4(x,s) = a — Aga(x, s)/b. Again, the optimal price and
intensity can be written in closed form and maintain monotonicity properties.
Logit demand function: For the logit demand function, using (2), we get
a

ARA(X; s) =

W(é—b(](x,s)—](X—l,s))—1)+b(7 (o) T-1.9) 1
1+e

The corresponding price isPr4(x,5) = zIn(a/ Aga(x,s) — 1).
The solution to the deterministic problem leads to], (x,s) = (min (x,A*s}/b) In ((as/
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min{x,1*s)) — 1) where * = ae~W1/9-1 /1 + ¢=W(/&)=1 Unfortunately, however, there is no
closed-form representation offy; (x, s) since there is no closed-form solution for J*(1,s)in (3).
J*(1, s)can only be represented as a solution (z) to the following equation.

fz 1+w(eby-1) _ ax
0 wen ()] T b

Therefore, all calculations need to be carried out numerically by obtaining the solution
J*(1,s) from (6) to get J,(x,s) = xJ*(1,s/x). However, the computation burden of the heuristic is
much less compared to obtaining the solutions for/*(1,s) forallx = 1,....n.

In general, calculating the prices (or intensities) that will be used for RA heuristic is as
difficult as solving the single differential in (3) and if (3) has a closed-form solution, the prices can
also be represented in closed form.

One can extend the idea used in computing the lower bound to a class of dynamic pricing
heuristics by approximating/* (1, s)with [, (x,s) = (x/k)J*(k,sk/x) with k > 1. More generally,
one can use a linear combination of d of these approximations such that J;;(x,s) = Y%_, a(x/

k) J*(k,sk/x). We performed a preliminary numerical investigation of the performance of these
heuristics with d > 1, but since this leads to additional computational burden and does not
necessarily provide a tighter bound in our numerical study, we only focusond = landa; = 1in
this paper.

Dynamic run-out rate heuristic

The dynamic run-out rate heuristic is a dynamic version of FP heuristic suggested in GvR.
For a given remaining time s in the horizon and remaining inventory X, the price is set at
Prr(x,s) = P(x,s) = max{p*,p°(x,s)},

Wherep*is the revenue maximizing price and p°(x,s) = p(1°(x,s)) with A°(x,s) = x/s
being the run-out rate. Alternatively, this heuristic sets the intensity at Azz(x, s) = A(x,s) =
min{1*, A°(x, s)}.

Note that Pgg(x, s) is the solution of the deterministic version of the problem solved when
the remaining time in the season is S and remaining inventory is X.Thus, this heuristic is equivalent
to continuously "resolving" the deterministic problem (fluid policy).

It is worthwhile here to note what distinguishes dynamic run-out rate heuristic (RR) from
fixed-price (FP) heuristic. FP heuristic solves the deterministic problem once only at the beginning
of the selling period when there are n units of inventory and t units of time remaining. This
A, t) = % is the run-out rate. FP does not change this price during the selling period. RR heuristic,

on the other hand, resolves the deterministic problem at every instant by recalculating run-out rate
Ax,8) = % for the given remaining time s and inventory x, and sets the price to

Prr(x,s) = max{p*,p(1°(X,S))} at that instant.

Example price paths: We demonstrate the price paths created by the optimal and heuristic
policies in an example in Fig. 3. There are n=>5 units of inventory to sell over a horizon of length t=
10. The average demand rate depends on the price through the function A(P) = 2 — p (linear price
response function with a=2 and b= 1). For this function, we have, P* = A* = 1. FP heuristic sets
the price to

Pep = P = p(min{1*,n/t)) = p(min{1,0.5)) = 2—0.5 = 1.5.

One can determine the price of OFP heuristic by maximizing

PE[min (n, Ny (£)}] = pE[min{5, N; ,(10)}]. A numerical procedure can be used to
find Pyrp = 1.419305. Dynamic pricing policies adjust the price as a function of remaining time s
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and remaining inventory x. RR heuristic sets the price to Prr(X,S) = p (min {/1*, f)) = 2-
min{1, x/s}. As explained in Section 2.1, RA heuristic computes a lower and an upper bound for
the revenue-to-go and uses a combination of these to compute the price. In this example (as well as

in most of other numerical experiments), we use 8(x,s) = 1/vX as the weight of the lower bound.
Using this, Ag4 (X, S) given in (5) and the fact that Pr4(X,S) = 2 — Az4(X,S), we find

(1 N 2s/x _ 2svx —1 N min{x, s} (2s — min{x, s})(vx — 1)
2s+4x 2s+4(x—1) 2svx
Poa(r,s) =4 _ min{x — 1,5} (2s — min{x — 1, sP(¥Vx —1—1) x> 1
2svx — 1 '
2s
L 1+25+4lfx=1.

price

OFP OPT RA == ===RR w=+= FP

10 9 8 7 G 5 4 3 Fa 1 o

= [remaining time)

Figure 3. Price paths for optimal and heuristic policies, linear demand, a=2, b=1, t=10, n=5.
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Figure 4. Price paths for optimal and heuristic policies, logit demand
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Finally, the optimal dynamic price P*(x, s) can be computed only numerically by solving the
system of differential equations given in (1).

Sample price paths for optimal dynamic pricing (denoted by OPI), RA heuristic and RR
heuristic are plotted in Fig. 3, as well as the fixed prices set by FP and OFP heuristics. The
horizontal axis represents the remaining time in the season. The jumps in dynamic policies
correspond to sales (for demonstration, the example assumes that the sales are realized at the same
times for each policy, although, in reality the realizations depend on the prices charged and hence
could be different for each policy). As is the case for the optimal dynamic policy, both dynamic
pricing heuristics reduce the price over time between consecutive sales and introduce an upward
jump at each sale (the only exception to this behavior is when the remaining time in the selling
period is less than 1 and remaining inventory is 1. leading to a constant price Prr(1,s) =
p(min (1,1 /s}) = 1 for RR heuristic). The price set by RR heuristic can be somewhat different
from the optimal price. On the other hand. RA heuristic's price is always very close to the optimal
dynamic price. In this particular case. the difference P*(X,S) — Pr4(X, S)remains in the interval [-
0.005017.0.005708]. The optimal expected revenue for this example isA*(5,10) = 6.4857. Using
RA.RR.OFP. FP heuristics instead generate expected revenues
Jra(5,10) = 6.4844,Jz:(5,10) = 6.4268,],rp(5,10) = 6.2795, Jrp(5,10) = 6.1840.

Fig. 4 shows similar price paths for an example with logit price response function with
parameters b = W(1/e) and a = 1 + e W(1/e)=1/e=W(l/€)~1eading to p* = A1* = 1. Again,
we have five units of inventory to sell over a selling period of 10 time units. In this case. FP and
OFP heuristics' prices are very close to each other; Prp = 1.6441 andPyrp = 1.6439.

The price paths for the optimal dynamic policy and dynamic heuristics have shapes similar
to those in Fig. 3. However.in this case the range of prices is larger. RA heuristic still follows the
optimal policy closely although not as closely as the case for linear price response function. Again.
RR heuristic may set a price quite different from what is optimal. The optimal expected revenue for
this example is P*(5,10) = 7.0737. Using RA.RR.OFP. FP heuristics instead generate expected
revenues

Jra(5,10) = 7.0711, Jrr(5,10) = 6.9535, Jorp(5,10) = 6.7782, Jzp(5,10) = 6.7782.

Numerical study

In this section, we analyze the performance of dynamic pricing heuristics (namely. revenue
approximation (RA) and dynamic run-out rate (RR) heuristics) and compare their performance
against constant price heuristics (namely. fixed-price (FP) and optimal fixed-price (OFP) heuristics)
through a detailed numerical study. We also attempt to complement the numerical analysis in GvR
for FP and OFP by considering different demand functions and larger demand potentials. For this
purpose.we use exponential. linear and logit demand functions.

In order to calculate the expected revenue of a given dynamic pricing heuristic P, we first
numerically solve the system:

0Jp(x,s)

 — T(Ap(x, s)) — A, (x, s)[]p(x, s) = Jp(x — 1,5)], forallx = 1..... n,

with initial conditions Jp(0,s) = 0.Vs and/p(x,0) = 0. for all x =1,...,n, where
Ap(X,S) is the demand rate set by the heuristic policy. The expected revenue of using the heuristic
policy P then can be found by evaluating ], (x, s) at x=n and s=t.

In order to calculate the optimal revenue J*(n,t). We solve the system of differential
equations (1) numerically. We carried out these calculations in an advanced numerical mathematics
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software package. For larger problems (especially for larger values of starting inventory level) or
more complex price-response functions. obtaining the optimal policy may be intractable or the
computation times may be prohibitive in a practical setting.

Performance of fixed and dynamic pricing policies

In Table 2.we report the optimal revenue and performance of heuristic policies for the
exponential demand function when n =1 ..... 20 and A"t takes on values 10 or 40. The first four
columns of Table 2 report the optimal expected revenue (J*) and the performance of fixed price
policies FP and OFP for A"t = 10. These are exactly same as what is reported in Table 1 of GvR.
We extend the numerical study in GvR for a larger demand potential (1t = 40) in columns 8-10.
In addition.we report the performance of heuristic dynamic pricing policies./zzdenotes expected
revenue of the dynamic run-out heuristic. /2, denotes the expected revenue of the revenue
approximation heuristic when only the deterministic upper bound is used to approximate the value
function (i.e.,8(x,s) = 0).JitA denotes the expected revenue of the revenue approximation
heuristic when only the lower bound is used (i.e.,8(x,s) = 1) and J¥, denotes the expected

revenue approximation heuristic when weights are set to 8(x,s) = 1 /v/X (We investigated the use
of other weights such asf(x,s) = 0.5 or other functional forms. but these did not lead to better
performance ). When A"t = 10. the regrets of FP and OFP heuristics are relatively small. FP
heuristic performs worst at 87.06% for n = 1, but for larger values of n, the performance is good and
approaches 100% when n=20. OFP heuristic's worst performance is 94.51%. Comparing columns 3
and 4 with columns 10 and 11 shows that both FP and OFP heuristics perform worse for all. but two
values of n when 1"t = 40 case. Average reduction in performance is 3.15% and 2.85% for FP and
OFP heuristics. Respectively. Both heuristics lead to significant optimality gaps when A"t = 40.
Even when n=20. a regret of about four percent remains for both heuristics. This shows that for a
given starting inventory level (n), increasing the demand potential over the season (increasing A*or t)
reduces the effectiveness of fixed-price heuristics. especially when the price is not optimized.

In general. dynamic pricing heuristics offer important improvements over FP and OFP
heuristics and generate near optimal results. RR heuristic performs better than OFP heuristic except
five instances and its worst performance is 97. 2% when n = 8andA*t = 10. In contrast to fixed-
price heuristics, RR per-forms better when the demand potential is larger. WhenA*t = 40, RR has
a near-optimal performance with minimum performance at 99.34%.RA heuristic has an outstanding
performance in all instances. It performs better than FP, OFP and RR heuristics in all problems, and
its worst performance is as high as 99.84% (when n=10 andA1*t = 10). RA leads to an average of
3.97% and 7.44% improvement over FP heuristic forA't = 10 and A"t = 40 cases, respectively.
The improvement over OFP heuristic is, on the average, 2.22% and 5.23% for these cases. The
results in Table 2 also show that combining the upper and lower bounds when approximating the
revenue is important. These bounds, when used alone in approximating the optimal revenue
(JR andJE,), do not lead to a consistent and comparable performance.

A similar study is carried out for the linear price response function in Table 3. In particular,
we used a = 2 and b=1 leading tod* = p* = 1. The performance of FP heuristic in the linear
demand case is generally worse than the case of exponential demand. For A*t = 10,
theworstperformanceisat72.06%when n=1. The OFP heuristic, on the other hand, performs better
with the linear price response function. The worst performances 96.66% when n=3. Increasing the
demand potential A"t to 40 has a more dramatic effect on FP heuristic in the case of linear price
response function. For all values of n, FP heuristic performs worse with larger demand potential.
Forn = 1, the performance goes down to 65.54%. When A*t is increased from 10 to 40, the
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average reduction in performance is about 6.28%. The OFP heuristic, on the other hand, performs
better with A"t = 40 for smaller values of n, and performs worse for larger values of n. The
average reduction in performance is 1.27%. Regret in the range of 3-4% still remains even for large
values of n for both heuristics.

Table 2. Performance of dynamic and fixed price heuristics, exponential, a=e.

n A*t=0 A*t =40

* * * * D H J RA / * J FP / * * D H *

J Jep /[ J* Jorp/J Jrr/J Jral T Jral T J Jorp/J Jrr/Jd Jral T Jaarr Jrald
J* J*

1 2.3979 0.8706 0.9451 0.9866 0.9122 1.0000 1.0000 3.3327 0.7981 0.9343 0.9976 0.8974 1.0000 1.0000
2 4.1109 0.9259 0.9468 0.9841 0.9644 0.9767 0.9998 6.7346 0.8654 0.9365 0.9973 0.9502 0.9759 0.9996
3 5.4279 0.9452 0.9500 0.9817 0.9800 0.9698 0.9998 9.3508 0.8938 0.9387 0.9971 0.9687 0.9622  0.9993
4 6.4682 0.9535 0.9537 0.9793 0.9862 0.9704 0.9997 11.6799 0.9101 0.9407 0.9969 0.9779 0.9536 0.9993
5 7.2982 0.9564 0.9578 0.9769 0.9885 0.9745 0.9995 13.7866 0.9209 0.9425 0.9967 0.9834 0.9481 0.9993
6 7.9609 0.9558 0.9621 0.9748 0.9889 0.9800 0.9993 15.7117 0.9286 0.9442 0.9965 0.9870 0.9445 0.9993
7 8.4869 0.9523 0.9667 0.9730 0.9883 0.9855 0.9990 17.4834 0.9346 0.9458 0.9963 0.9894 0.9423 0.9994
8 8.8998 0.9460 0.9713 0.9720 0.9872 0.9903 0.9987 19.1223 0.9393 0.9473 0.9960 0.9912 0.9412 0.9994
9 9.2190 0.9369 0.9759 0.9724 0.9864 0.9940 0.9985 20.6443 0.9431 0.9487 0.9958 0.9925 0.9410 0.9995
1 9.4605 0.9248 0.9805 0.9753 0.9865 0.9964 0.9984 22.0619 0.9463 0.9501 0.9956 0.9935 0.9414 0.9996
1 9.6387 0.9509 0.9847 0.9807 0.9886 0.9978 0.9988 23.3850 0.9490 0.9514 0.9954 0.9943 0.9424 0.9996
1 9.7662 0.9696 0.9886 0.9863 0.9916 0.9984 0.9992 24.6221 0.9513 0.9527 0.9952 0.9949 0.9438 0.9996
1 9.8544 0.9821 0.9919 0.9911 0.9945 0.9986 0.9995 25.7803 0.9533 0.9540 0.9950 0.9954 0.9456 0.9997
1 9.9129 0.9899 0.9946 0.9946 0.9966 0.9986 0.9997 26.8654 0.9550 0.9553 0.9948 0.9957 0.9478 0.9997
1 9.9500 0.9946 0.9966 0.9969 0.9981 0.9985 0.9998 27.8827 0.9565 0.9565 0.9946 0.9960 0.9502 0.9997
1 9.9726 0.9973 0.9980 0.9983 0.9990 0.9986 0.9998 28.8367 0.9578 0.9578 0.9943 0.9962 0.9528 0.9997
1 9.9856 0.9987 0.9989 0.9992 0.9995 0.9986 0.9998 29.7314 0.9589 0.9590 0.9941 0.9963 0.9557 0.9997
1 9.9928 0.9994 0.9995 0.9996 0.9998 0.9988 0.9998 30.5703 0.9599 0.9602 0.9939 0.9964 0.9586 0.9997
1 9.9965 0.9997 0.9997 0.9998 0.9999 0.9989 0.9998 31.3567 0.9607 0.9615 0.9937 0.9965 0.9617 0.9997
2 9.9984 0.9999 0.9999 0.9999 1.0000 0.9991 0.9999 32.0934 0.9614 0.9627 0.9934 0.9965 0.9649 0.9997

>
<
9

8.4399 0.9625 0.9781 0.9861 0.9868 0.9912 0.9994 21.0516 0.9322 0.9500 0.9955 0.984t 0.9537 0.9996

Table 3. Performance of dynamic and fixed price heuristics, linear, a=2,b =I.

n A*t A*t

J* Jep ! Jopp/! Jrr! i s Jra J* Jep ! Jopp/! Irr! i s Jral
1 1.6667 0.7206 0.9695 0.9798 0.8811 1.0000 1.0000 1.9048 0.6554 0.9801 0.9836 0.9039 1.0000 1.0000
2 3.1325 0.8382 0.9674 0.9858 0.9305 0.9857 0.9995 3.7508 0.7584 09779 0.9861 0.9331 0.9925  0.9990
3 44164 0.8961 0.9666 0.9892 0.9552 0.9768 0.9997 5.5421 0.8086 0.9762 0.9879 0.9479 0.9843 0.9984
4 5.5307 09311 0.9670 0.9908 0.9700 0.9738 0.9998 7.2807 0.8399 0.9748 0.9893 0.9572 0.9765 0.9981
5 6.4857 0.9535 0.9682 0.9909 0.9793 0.9750 0.9998 8.9678 0.8620 0.9736 0.9905 0.9638 0.9696 0.9981
6 7.2917  0.9670 0.9702 0.9899 0.9850 0.9788 0.9997 10.6040 0.8786 0.9726 0.9915 0.9688 0.9634 0.9982
7 7.9597 09729 0.9729 0.9879 0.9880 0.9836 0.9995 12.1901 0.8918 09717 0.9923 0.9728 0.9581 0.9983
8 8.5017 0.9716 0.9762 0.9855 0.9890 0.9885 0.9991 13.7265 0.9026 0.9710 0.9930 0.9760 0.9536 0.9986
9 8.9306 0.9625 0.9797 0.9835 0.9888 0.9925 0.9986 15.2137 09117 0.9704 0.9937 0.9787 0.9500 0.9988
1 9.2604 0.9448 0.9834 0.9838 0.9887 0.9955 0.9982 16.6519 0.9195 0.9699 0.9942 0.9810 0.9470 0.9990
1 9.5059 0.9642 0.9871 0.9869 0.9903 0.9974 0.9984 18.0415 0.9262 0.9695 0.9947 0.9830 0.9447 0.9992
1 9.6821 0.9780 0.9905 0.9907 0.9929 0.9984 0.9990 19.3829 0.9321 0.9692 0.9951 0.9847 0.9431 0.9994
1 9.8035 0.9871 0.9934 0.9939  0.9953 0.9989 0.9994 20.6763 0.9374 0.9689 0.9955 0.9863 0.9421 0.9995
1 9.8836  0.9929 0.9957 0.9964 0.9972  0.9990 0.9997 21.9221 0.9420 0.9688 0.9958 0.9876 0.9417 0.9996
1 9.9340 0.9962 0.9974 0.9979  0.9984 0.9991 0.9998 23.1205 0.9463 0.9687 0.9961 0.9888 0.9418 0.9997
1 9.9642 0.9981 0.9985 0.9989 0.9992  0.9991 0.9998 24.2718 0.9501 0.9687 0.9964 0.9899 0.9424 0.9998
1 9.9814 0.9991 0.9992 0.9995 0.9996 0.9991 0.9999 25.3764 0.9535 0.9688 0.9965 0.9909 0.9434 0.9998
1 9.9908 0.9996 0.9996 0.9997 0.9998 0.9992 0.9999 26.4346 0.9567 0.9690 0.9967 0.9917 0.9449 0.9998
1 9.9956  0.9998 0.9998 0.9999  0.9999 0.9993 0.9999 27.4466 0.9595 0.9692 0.9968 0.9925 0.9468 0.9998
2 9.9980 0.9999 0.9999 0.9999  1.0000 0.9994 0.9999 28.4130 0.9621 0.9695 0.9969 0.9932  0.9490 0.9998

AVe 8.0958  0.9537 0.9841 0.9915 09814 0.9920 0.999516.5459 0.89470.9714 0.9931 0.9736  0.9567 0.9991

Again, in general, dynamic pricing heuristics offer important improvements over FP and
OFP heuristics and perform close to optimal. RR heuristic performs better than OFP heuristic except
one instance and its worst performance is 97.98% when n = land A*t = 10. WhenA*t = 40, RR
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has a near-optimal performance with minimum performance at 98.36%.

RA heuristic has an outstanding performance for the linear demand case. It performs better
than FP, OFP and RR heuristics for all instances. Its minimum performance is 99.81% when n=5
and A"t = 40. RA leads to an average of 5.42% and 12.65% improvement over FP heuristic for
At =10 andA"t = 40 cases, respectively. The improvement over OFP heuristic is, on the
average, 1.58%, and 2.85% for these cases.

Finally, in Table 4, we report the results for the logit price response function. We use
b =W(l/e)+ landa = 1 + e WA/&O~1/e=W(l/e)=1 a0ain Jeading to p* = 1and A* = 1.

The performances of FP and OFP heuristics are usually similar to what is observed for the
exponential price response function. The worst performances of FP and OFP heuristics for A"t =
10 are 85.06% and 94.52%, respectively, when n = 1. Increasing the demand potential has a
negative effect on the performance for both heuristics. Worst performances go down to 78.27% and
93.50% for FP and OFP heuristics, respectively. On the average, increasing the demand potential
A*t from 10 to 40 reduces the performance by 3.63% and 2.80% for FP and OFP, respectively.

Once again, dynamic pricing heuristics offer significant improvements over fixed-price
heuristics. RR heuristic performs better than OFP heuristic in all instances except for three.
WhenA*t = 10, the worst performance of RR heuristic is 97.64%. WhenA't = 40, the
performance is very close to optimal with minimum at 99.53%.

RA heuristic has a remarkable performance with the logit price response function. Once
again, it performs better than FP, OFP and

RR heuristics in all instances. The minimum performance is 99.83% when A"t = 10 and
n=10. RA heuristic offers an average performance improvement of 3.97% and 7.99% over FP
heuristic for A"t = 10 and A"t = 40 cases, respectively. The improvement over OFP heuristic is,
on the average, 2.20%, and 5.15% for these cases.

In order to better understand the impact of demand potential on performance of heuristic
pricing policies, we provide Fig. 5, which shows the performance of FP, OFP, RA and RR heuristics
as a function of't for the three demand functions with n=5 and 1* = p* = 1.

For all demand functions, when t is very small, the performance of all heuristics are close to
optimal. This is expected since all four heuristics tend to use an intensity that minimizes the
instantaneous revenue rate and this is optimal. The performance of FP heuristic first goes down and
after t = n/A1* = 5 (when the intensity switches from A*to AD) goes back up again. However,
after a threshold, the performance of FP is a decreasing in t. The performance of OFP heuristic tends
to deteriorate as t increases for an extended range of t values. When t is considerably large, the
performance is rather flat and then increases as t increases. RR heuristic performs better than FP, but
the impact of t is similar for the initial part. The performance dips at t = n/ 1* = 5. However,
unlike FP, performance of RR is monotone increasing in t after this point. RA heuristic has a
consistently very strong performance for all demand functions and all values of t again with
minimum at 99.8%. It performs better than all heuristics for all demand functions and all values of't.

Larger problems

The numerical analysis so far shows that FP and OFP heuristics have important regrets,
especially for small and moderate values of starting inventory. In contrast, dynamic pricing
heuristics and especially RA heuristic, perform very close to optimal dynamic pricing policy. A
critical question is whether these results are valid when n is larger, as in certain problems
experienced in practice. In order to answer this question, we use a continuous price version of an
example used in GvR (Section 4). Consider a flight with n=300 seats on sale t=360 days prior to
departure.
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Table 4. Performance of dynamic and fixed price heuristics, logit

n A*t A*t
J* Jep! Jopp/! Jrr! i r Jra J* Jep ! Jopp/! Irr! 2 s Jral
1 1.6667 0.7206 0.9695 0.9798 0.8811 1.0000 1.0000 1.9048 0.6554 0.9801 0.9836  0.9039 1.0000 1.0000
2 3.1325 0.8382 0.9674 0.9858 0.9305 0.9857 0.9995 3.7508 0.7584 0.9779 0.9861 0.9331 0.9925 0.9990
3 44164 0.8961 0.9666 0.9892  0.9552 09768 0.9997 5.5421 0.8086 0.9762 0.9879  0.9479 0.9843  0.9984
4 5.5307 0.9311 0.9670 0.9908 0.9700 0.9738 0.9998 7.2807 0.8399 0.9748 0.9893  0.9572  0.9765 0.9981
5 6.4857 09535 0.9682 0.9909 0.9793  0.9750 0.9998 8.9678 0.8620 0.9736 0.9905 0.9638 0.9696 0.9981
6 7.2917 0.9670 0.9702 0.9899  0.9850 0.9788 0.9997 10.6040 0.8786 0.9726 0.9915 0.9688 0.9634 0.9982
7 7.9597 0.9729 0.9729 0.9879  0.9880 0.9836 0.9995 12.1901 0.8918 0.9717 0.9923  0.9728 0.9581 0.9983
8 8.5017 09716 0.9762 0.9855 0.9890 0.9885 0.9991 13.7265 0.9026 0.9710 0.9930 0.9760 0.9536  0.9986
9 8.9306 0.9625 0.9797 0.9835 0.9888 0.9925 0.9986 15.2137 0.9117 0.9704 0.9937 0.9787 0.9500 0.9988
1 9.2604 0.9448 0.9834 0.9838 0.9887 0.9955 0.9982 16.6519 0.9195 0.9699 0.9942  0.9810 0.9470  0.9990
1 9.5059 0.9642 0.9871 0.9869 0.9903 0.9974 0.9984 18.0415 0.9262 0.9695 0.9947  0.9830 0.9447 0.9992
1 9.6821 0.9780 0.9905 0.9907  0.9929 0.9984 0.9990 19.3829 0.9321 0.9692 0.9951 0.9847 09431 0.9994
1 9.8035 0.9871 0.9934 0.9939  0.9953 0.9989 0.9994 20.6763 0.9374 0.9689 0.9955 0.9863 0.9421 0.9995
1 9.8836  0.9929 0.9957 0.9964 0.9972 0.9990 0.9997 21.9221 0.9420 0.9688 0.9958 0.9876 0.9417 0.9996
1 9.9340 0.9962 0.9974 0.9979 0.9984 0.9991 0.9998 23.1205 0.9463 0.9687 0.9961 0.9888 0.9418 0.9997
1 9.9642 0.9981 0.9985 0.9989  0.9992  0.9991 0.9998 24.2718 0.9501 0.9687 0.9964 0.9899 0.9424 0.9998
1 9.9814 0.9991 0.9992 0.9995  0.9996  0.9991 0.9999 25.3764 0.9535 0.9688 0.9965 0.9909 0.9434 0.9998
1 9.9908 0.9996 0.9996 0.9997  0.9998  0.9992 0.9999 26.4346 0.9567 0.9690 0.9967 0.9917 0.9449  0.9998
1 9.9956  0.9998 0.9998 0.9999  0.9999 0.9993 0.9999 27.4466 0.9595 0.9692 0.9968  0.9925 0.9468  0.9998
2 9.9980  0.9999 0.9999 0.9999  1.0000 0.9994 0.9999 28.4130 0.9621 0.9695 0.9969 0.9932 0.9490 0.9998
AVe 80958 09537 09841 09915 009814 09920 0.999516.5459 0.89470.9714  0.9931 09736 0.9567 0.9991
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Fig. 5. Performance of fixed price heuristics, n=5, p* =A*=1.

If the price is P; = $198, the demand rate is 4; = 1 passenger per day. If the price is
P, = $358, the demand rate isd, = 0.5 passenger per day. These data points correspond to
parameters a=2.35790 (and a scaling factor ( @ = 0.004332), (a,b) = (518/320,1/320), and (a,b) =
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(3.87534,0.00533) for the exponential, linear and logit demand functions, respectively. The expected
revenues for the optimal policy and FP, OFP, RR and RA heuristic are provided in Table 5. For each
demand function, we also provide results for three other problems in which, (i) the period length is
twice, (ii) the initial inventory and the period length are half, (iii) the initial inventory is half, of
those of the original problem.

As expected, the performances of FP and OFP heuristics are better since the expected sales is
larger than the problems considered in Tables 2-4. However, the performance of FP heuristic varies
around 97-98%. When the expected sales is not large compared to starting inventory, i.e., when (n,t)
= (300,360) or (n,t) = (150,180), using OFP heuristic instead leads to significant improvements and
near-optimal performance. However, when the expected sales is larger, i.e., when (n,t) = (300,720)
or (n,t) = (150,360), OFP heuristic provides only slight improvements over FP heuristic and its
performance remains around 98%. RR and RA heuristics offer important improvements over fixed-
price heuristics for these problem instances. RR performs better than OFP heuristics in all but two
instances. RA heuristic, on the other hand, has a truly outstanding performance. It performs better
than other heuristics in all instances and very close to optimal, with a maximum regret of 0.06%. We
believe that the additional revenue gains in the range of 2-3% over FP and OFP heuristics through
dynamic pricing are important in practice

Table 5. Performance of pricing heuristics for large n and t.

Demand n t J* J EP J EP / J J OFP / J RR J RR / JRA JRA /

Exponential 300 360 $71,76  $70,36 0.9805 $71,4 0.9954 $71,6 09981 $71,74 0.9998
300 720 $119,3 $117,2 0.9829 $117, 0.9832 $119, 0.9996 $119,3 1.0000

150 180 $35,78 $34,84 0.9736 $35,5 0.9933 $35,6 0.9967 $35,77 0.9996

150 360 $59,37 $58,05 0.9779 $58,0 0.9784 $59,3 0.9991 $59,36 0.9999

Linear 300 360 $75,30 $74,59 0.9905 $75.1 0.9973 $75,2 09988 $75,28 0.9996
300 720 $114,6 $112,7 0.9834 $112, 0.9851 $114, 0.9997 $114,6 1.0000

150 180 $37,54 $36,96 0.9843 $37,3 0.9954 $37,4 09976 $37,52 0.9994

150 360 $57,03 $55,82 0.9788 $559 0.9811 $57,0 0.9995 $57,03 0.9999

Logit 300 360 $72,58 $71,14 0.9802 $72,2  0.9960 $71,8 0.9906 $72,55 0.9997
300 720 $118,2 $116,2 0.9830 $116, 0.9831 $118, 0.9991 $118,2 1.0000

150 180 $36,19 $35,22 0.9733 $35,9 0.9939 $355 0.9834 $36,17 0.9995

150 360 $58,86  $57,57 0.9782 $57,5 0.9782 $58,7 0.9983 $58,85 1.0000

Frequency of price changes

The numerical results so far show that the dynamic pricing heuristics, particularly RA
heuristic, dominate the performance of fixed-price heuristics and the revenue gains through these
heuristics can be very important in practice. A practical consideration is the impact of frequency of
price changes. In many applications, one may find it impossible or impractical to alter the prices
continuously over time and choose to use a version of these heuristics in which the prices are
changed in a periodic manner. In these cases, the season is divided into a pre-specified number of
periods and prices can be updated only at the beginning of these periods. For RR heuristic, the
deterministic problem can be resolved and the prices (or the intensities) are changed only at the
beginning of each period, and this frequency of price changes corresponds to the resolving
frequency. For RA heuristic, the prices (or the intensities) can be determined periodically using Eq.
(2) (We should note that one can attempt to solve the periodic problem optimally using a dynamic
program. However, the problem becomes intractable quickly. The prices that will be used by
periodic versions of RR and RA heuristics are easily computable and in most cases, are closed-form
expressions).
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Table 6. Frequency of price changes: exponential demand

Aft n Jre Dynamic revenue rate: Jnn
2 3 4 5 6 7 8 9 10

10 1 0.8706 0.9591 0.983 0.9921 0.9953 0.9961 0.9959 0.995 0.994 0.9934 0.9866
2 0.9259 0.9667 0.977 0.9818 0.9834 0.9853 0.9857 0.985 0.984 0.9841 0.9841
3 0.9452 0.9658 0.971 0.9756 0.9768 0.9790 0.9799 0.980 0.979 0.9787 0.9817
5 0.9564 0.9584 0.963 0.9670 0.9678 0.9707 0.9718 0.972 0.972 0.9711 0.9769
8 0.9460 0.9508 0.956 0.9596 0.9602 0.9637 0.9651 0.966 0.966 0.9646 0.9720
10 0.9248 0.9465 0.957 0.9616 0.9629 0.9665 0.9680 0.969 0.969 0.9680 0.9753

40 1 0.7981 0.9093 0.948 0.9675 0.9779 0.9843 0.9885 0.991 0.993 0.9948 0.9976
2 0.8654 0.9329 0.957 0.9701 0.9776 0.9818 0.9849 0.987 0.989 0.9907 0.9973
3 0.8938 0.9426 0.961 0.9711 0.9773 0.9806 0.9833 0.985 0.987 0.9886 0.9971
5 0.9209 0.9528 0.964 0.9712 0.9759 0.9783 0.9804 0.982 0.983 0.9849 0.9967
8 0.9393 0.9537 0.960 0.9649 0.9682 0.9697 0.9710 0.972 0.973 0.9743 0.9960
10 0.9463 0.9463 0.949 0.9519 0.9537 0.9543 0.9550 0.955 0.956 0.9570 0.9956

AVe 0.9111 0.9487 0.962 0.9695 0.9731 0.9759 0.9775 0.978 0.979 0.9792 0.9881

Aft n Jre__approximation: number of periods used Jra

2 3 4 5 6 7 8 9 10

10 1 0.8461 0.9354 0.964 0.9772 0.9841 0.9883 0.9911 0.992 0.994 0.9953 1.0000
2 0.9162 0.9550 0.969 0.9774 0.9822 0.9854 0.9876 0.989 0.990 0.9916 0.9998
3 0.9376 0.9610 0.971 0.9780 0.9821 0.9849 0.9870 0.988 0.989 0.9909 0.9998
5 0.9561 0.9688 0.976 0.9809 0.9841 0.9863 0.9880 0.989 0.990 0.9913 0.9995
8 0.9698 0.9774 0.982 0.9853 0.9875 0.9891 0.9904 0.991 0.992 0.9927 0.9987
10 0.9717 0.9814 0.986 0.9886 0.9903 0.9914 0.9923 0.993 0.993 0.9940 0.9984

40 1 0.7908 0.9007 0.940 0.9594 0.9704 0.9774 0.9821 0.985 0.987 0.9897 1.0000
2 0.8813 0.9342 0.954 0.9658 0.9729 0.9778 0.9813 0.983 0.986 0.9876 0.9996
3 0.9096 0.9440 0.959 0.9680 0.9739 0.9782 0.9813 0.983 0.985 0.9871 0.9993
5 0.9304 0.9528 0.964 0.9715 0.9763 0.9798 0.9824 0.984 0.986 0.9874 0.9993
8 0.9427 0.9606 0.969 0.9755 0.9794 0.9822 0.9843 0.986 0.987 0.9885 0.9994
10 0.9475 0.9644 0.972 0.9776 0.9810 0.9835 0.9855 0.987 0.988 0.9893 0.9996

AVe 0.9167 0.9530 0.967 0.9754 0.9804 0.9837 0.9861 0.987 0.989 0.9905 0.9995

Table 7. Frequency of price changes: exponential demand

A* n /e __Dynamic revenue rate: number e
2 3 4 5 6 7 8 9 10
10 1 0.720 0.8626 0.916 0.942 0.9556 0.9633 0.9675 0.969 0.970 0.971 0.9798
2 0.838 0.9228 0.951  0.9638 0.9701 0.9758 0.9786 0.979 0.98 0.9795 0.9858
3 0.896 0.949 0.964 0.9733 0.9769 0.9812 0.9835 0.984 0.984 0.9834 0.9892
5 0.953 0.9675 0.975 0.9795 0.9807 0.9842 0.9857 0.986 0.986 0.985 0.9909
8 0.971 0.9689 0.972 0.975 0.9751 0.9786 0.98 0.980 0.981 0.979 0.9855
10 0.924 0.9448 0.957 0.9671 0.9711 0.9722 0.97 09772 0.978 0.9789 0.977
40 1 0.655 0.8005 0.862 0.8955 0.9163 0.9303 0.9402 0.947 0.953 0.9578 0.9836
2 0.758 0.8587 0.899 0.9215 0.9357 0.9427 0.9489 0.954 0.958 0.9622 0.9861
3 0.808 0.8864 0.917 0.9329 0.9437 0.9482 0.9527 0.956 0.960 0.9636 0.9879
5 0.862 0.916 0.932 0.9411 0.9485 0.9505 0.9533 0.955 0.958 0.9612 0.9905
8 0.902 0.9206 0.927 0.9323 0.9368 0.937 0.9384 0.939 0.940 0.9435 0.993
10 0.946 0.9195 0.907 0.9075 0.9084 0.9103 0.90 0.9099 0.910 0.9109 0.9127
AVe 0.852 0.9099 0.932  0.9447 0.9518 0.9564 0.9597 0.962 0.963 0.9647 0.9875
Mt s Revenueapproximation:number i
2 3 4 5 6 7 8 9 10
10 1 0.892 0.9294 0.958 0.9799 0.9922 0.9944 0.9958 0.996 0.997 0.9979 1.0000
2 0.948 0.9545 0.966 0.9803 0.9901 0.9919 0.9932 0.994 0.994 0.9953 0.9995
3 0.953 0.9612 0.970 0.9807 0.9892 0.9910 0.9923 0.993 0.994 0.9947 0.9997
5 0.960 0.9688 0.976 0.9834 0.9891 0.9908 0.9921 0.993 0.993 0.9944 0.9998
8 0.976 0.9798 0.983  0.9877 0.9905 0.9918 0.9927 0.993 0.994 0.9945 0.9991
10 0.971 0.9775 0.983 0.9870 0.9897 0.9914 0.99 0.993 0.9942 0.9946
40 1 0.872 0.9150 0.948 0.9741 0.9903 0.9930 0.9947 0.995 0.996 0.9973 1.0000
2 0.950 0.9536 0.965 0.9795 0.9907 0.9925 0.9937 0.994 0.995 0.9957 0.9990
3 0.962 0.9643 0.970 0.9804 0.9897 0.9914 0.9926 0.993 0.994 0.9946 0.9984
5 0.966 0.9707 0.975 0.9812 0.9888 0.9904 0.9916 0.992 0.993 0.9937 0.9981
8 0.965 0.9715 0976 0.9823 0.9886 0.9902 0.9914 0.992 0.993 0.9936 0.9986
10 0.947 0.9645 0.97 0.9771 0.9827 0.9887 0.99 0.992 0.9931 0.9937
AVe 0049 00AN2 0QG71 09818 09899 0Q917 00929 0G93 0994 09950 09991
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Table 8. Frequency of price changes: exponential demand

Mtom = Dynamic revenue rate: o
2 3 4 5 6 7 8 9 10
10 1 07206 08626 0916 0042 09556 09633 0.9675 0069 0970 0971 09798
2 08382 09228 0951 09638 09701 09758 09786 0979 098 09795  0.9858
3 08961 0949 0964 00733 09769 09812 09835 0984 0984 09834  0.9892
5 09535 09675 0975 00795 09807 0.9842 09857 0986 0986 0985  0.9909
8 00716 09689 0072 0975 09751 09786 0.98 0980 0981 0979  0.9855
10 00248 00448 0957 09671 00711 09722 0.7 0.9772 0978 09789  0.977
40 1 06554 0.8005 0.862 08955 09163 09303 0.9402 0947 0953 09578  0.9836
2 07584 08587 0.899 09215 0.9357 09427 09489 0954 0958 09622  0.9861
3 08086 08864 0917 00329 09437 0.9482 09527 0956 0960 09636  0.9879
5 0862 0916 0932 00411 09485 09505 09533 0955 0958 09612  0.9905
8 09026 00206 0027 09323 09368 0937 09384 0939 0940 09435  0.993
10 00463 09195 0907 09075 09084 09103 090 0.9099 0910 09109  0.9127
AVe 0.8526 0.9099 0932 009447 09518 0.9564 0.9597 0962 0963 0.9647  0.9875
Mton s Revenueapproximation:n z
2 3 4 S 6 7 8 9 10
10 1 08922 09294 0058 00799 00922 09944 09958 0096 0997 09979  1.0000
2 09481 09545 0.966 0.9803 0.9901 0.9919 09932 0.994 0.994 09953  0.9995
3 00530 09612 0970 00807 09892 0.9910 09923 0993 0994 09947  0.9997
5 09601 09688 0976 09834 09891 0.9908 09921 0993 0993 09944  0.9998
8 00761 09798 0983 09877 09905 09918 0.9927 0993 0994 00945  0.9991
10 09717 09775 0983 09870 09897 0.9914 0.99 0993 09942  0.9946
40 1 08724 09150 0948 09741 09903 09930 0.9947 0995 0996 09973  1.0000
2 09509 09536 0.965 0.9795 0.9907 0.9925 0.9937 0994 0.995 09957  0.9990
3 09624 09643 0970 00804 09897 09914 09926 0993 0994 09946  0.9984
5 09663 09707 0975 09812 09888 0.9904 09916 0992 0993 09937  0.9981
8 00654 09715 0976 09823 09886 09902 0.9914 0992 0993 0.936  0.9986
10 09475 09645 0097 09771 09827 09887  0.99 0092 09931  0.9937
AVe 0.9491 09602 0971 09818 09899 09917 0.9929 0993 0994 09950  0.9991

Table 6 shows the impact of the number of periods used on the performance of RR and RA
heuristics for exponential demand function when A* = p* = 1. For the upper part of Table 6, the
third column is the performance (as a ratio of the optimal dynamic policy) of FP heuristic (no
resolving). The last column is the performance of RR heuristic with continuous resolving. Columns
4-12 show the performance of RR heuristic when 2-10 equal length periods are used. For the lower
part of Table 6, the third column is the performance of RA heuristic when the price is set at the
beginning and never changed. The last column is the performance of RA heuristic when the prices
are continuously adjusted. Columns 4-12 show the performance of RA heuristic when 2-10 equal-
length periods are used.

The results in Table 6 are important. First, while resolving periodically generates better
performance than FP heuristic, the impact of resolving is not monotone, i.e., resolving more often
does not necessarily lead to better performance. This is especially true when starting inventory (n)
and demand potential (A*t) are both small. For moderate n and large A*t, resolving may provide
important gains over FP heuristic (consider, for example, n =1 0 and A"t = 40). However, in order
to realize these gains, resolving has to take place very frequently; infrequent resolving generates
only modest improvement. One important observation is that for n = 1 andA*t = 10, the
performance of continuous resolving is worse than resolving 4-10 times throughout the horizon.
Similarly for n =2 and At = 10, the performance of continuous resolving is worse than resolving
5-10 times throughout the horizon.

Table 6 shows that RA heuristic behaves better with respect to the frequency of price
changes. Updating prices more often always leads to better performance for RA heuristic. One can
quickly get close to the full revenue potential of RA heuristic by introducing a limited number of
opportunities to update prices, especially when the expected demand is small (1"t = 10).
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Table 7 extends the analysis to the linear demand function. In this case, we have negative
results similar to one provided in [91 for RR heuristic. For example, when n= 10 and A*t = 40,
resolving, if not frequent enough, leads to a performance worse than that of FP heuristic. Note that
for this instance, continuous resolving provides more than eight percent improvement over FP
heuristic. One can also observe the non-monotonicity of the RR heuristic's performance with respect
to resolving frequency in Table 7. With linear demand function, RA heuristic continues to behave
nicely with respect to the frequency of price changes. Increasing frequency always leads to better
performance. With linear demand, for all problems, a performance around 99% can be obtained by
using five opportunities to change the price. Table 8 shows the results for the logit price response
function. Again, RR heuristic's performance is not monotone in resolving frequency. Resolving may
lead to a performance worse than FP heuristic, and resolving continuously may lead to a
performance worse than resolving periodically. On the other hand, the performance RA heuristic is
monotone in the frequency of price changes also for the logit function.

We conclude that in practical settings where continuously changing prices is not possible,
one should carefully fine-tune the resolving frequency for RR heuristic for each problem setting as
there does not seem to be any universal relationship between the resolving frequency and solution
quality. The performance of RA heuristic, on the other hand, is monotone in the frequency of price
changes. One can obtain the desired performance by setting the frequency sufficiently high.

Conclusion

In this paper, we investigate the use of fixed and dynamic pricing policies for selling a fixed
amount of inventory over a finite horizon. We propose two simple and computationally feasible
dynamic pricing heuristics that can be used to update prices as uncertainty is resolved throughout the
horizon. The first heuristic, the revenue approximation heuristic, is based on approximating the
value function that arise in the dynamic programming formulation to determine optimal prices. The
second heuristic, the dynamic run-out rate heuristic, is based on continuously resolving the
deterministic version of the problem. Through a detailed numerical study, we demonstrate that fixed
price heuristics lead to serious shortcomings in revenue with general demand functions for moderate
and small values of starting inventory when the demand potential is large. We show that these are
precisely the settings in which the dynamic pricing heuristics that we propose can be effectively
used to obtain near optimal performance. In particular, the revenue approximation heuristic has a
consistently remarkable performance, leading to a maximum 0.2% optimality gap in all problems we
consider. We also study the impact of changing prices periodically rather than continuously using
these heuristics. We show that the revenue approximation heuristic's performance is monotone in the
number of periods used and one can quickly get close to the full revenue potential of continuous
price changes. Our main conclusion is that dynamic pricing heuristics lead to near-optimal
performance and can provide important gains over fixed-price heuristics even when there is only
normal statistical variation in demand and that their use should be given more consideration in
theory and practice.
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