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Abstract

We investigate the daily volatility and Value-

at-Risk (VaR) forecasts for the Karachi Stock 

Exchange 100 Index (KSE-100) series from 1998 

to 2008. The forecasting performance of the 

distribution-type volatility models (GARCH-

N, -t, -SGT, and -HT) are compared with that 

of asymmetry-type models (GJR-GARCH and 

EGARCH) in order to ascertain the crucial de-

terminants for improving forecast accuracy 

of daily volatility and VaR. Empirical results in-

dicate that the GARCH-HT and GARCH-SGT 

models generate far more accurate daily volatility 

forecasts as compared to their competitors. For 

VaR calculation, the GARCH-t and GARCH-

SGT are the appropriate models to predict the 

daily VaRs of KSE-100 stock index under high 

confidence level.
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Volatility asymmetry; Daily price range; KSE

Introduction

Financial crisis, caused by high price move-

ments, irrational behavior of investors and end-

ing up with financial debris of  bankruptcy, bail-

out packages or even the complete extinction 

from the market have always been fatal. In ad-

dition, not only the national and institutional 

losses are observed but one who is hit the hardest 

is the individual investor. The developed coun-

tries, despite of strong financial markets, sound 

baking system and well informed investor expe-

rienced huge financial losses and further ensuing 

to a deteriorating national and international in-

vestment. (Wall street crisis of 1987).

The modeling and forecasting of the volatility 

has ever been an eminent feature of finance liter-

ature, different techniques and models have been 

developed to meet the growing requirements. Of-

ten the volatility in return’s series exhibit differ-

ent patterns such as mean reversion, persistence, 

clustering etc also their distribution is found to be 

non-normal (leptokurtic) skewness and kurtosis 

and these  multi-faceted characteristics make the 

modeling and forecasting even more challeng-

ing. While studying and forecasting the volatility 

of financial series a huge portion of literature rely 

on the generation of generalized conditional het-

eroskedasticity (GARCH and ARCH) models, 

developed by Engle (1982) and Bollerslev (1986). 

The GARCH generations of models not only ex-

plore the basic auto-regressive structure of con-

ditional variance but also have the flexibility to 

accommodate for numerous nuisance character-

istics of returns volatility. 

The observed financial volatility not only ne-

cessitates for accurate out of sample forecast but 

also demands the advanced and sophisticated 

models to forecast the volatility in a risk manage-

ment perspective. Value at Risk (VaR) is the most 

widely used technique for market risk estima-
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tions. VaR enables the financial analyst and risk 

managers to forecast/calculate the worst/highest 

a portfolio’s possible risk/loss for a selected pe-

riod of time and at a given level of significance. 

The available GARCH genre of models for mod-

eling and forecasting the volatility can be classi-

fied into distribution type and asymmetric type 

GARCH models. The distribution type GARCH 

models are the classical ARCH/GARCH mod-

els, which allow for a number of alternative dis-

tributional assumptions. The flexibility to permit 

a number of alternative error distributions en-

ables to calculate and compare the forecast abil-

ity of these models for a range of financial mar-

kets. Numerous studies have been conducted on 

the financial markets of the developed countries 

and the reported results have been found improv-

ing and varying for the stated alternative error 

distributions Wilhelmsson (2006) and Chuang et 

al. ( 2007). By applying the symmetric GARCH 

(1,1) with alternative error distributions on S&P 

100 index future returns, Wilhelmsson (2006) 

reported that predictive ability of the GARCH 

(1,1) with leptokurtic error distributions was sig-

nificantly improved in comparisons to other al-

ternatives,  allowing for the kurtosis (skewness) 

did improve the forecasts significantly. Never-

theless, use of a complex distribution in place 

of standard normal distribution does not guar-

antee improving forecasts. Chuang et .al (2007) 

analyzed the forecasting performance of linear 

GARCH model with various distributional as-

sumptions by using the data of stock market and 

exchange rate. The estimated results show that 

a simple distribution may perform no worse than 

a complex one.  

The asymmetric type GARCH models use 

flexible volatility specifications to accommodate 

for real life asymmetries and then examining 

the forecasting abilities. These models provide 

a useful way to overcome the inabilities of clas-

sical GARCH models. Among the researchers 

who advocate asymmetric type GARCH mod-

els to predict stock returns are Franses and van 

Dijk (1996) and Wei (2002) propose the Qua-

dratic-GARCH  model while Brailsford and 

Faff (1996) and Taylor (2004) report the results 

in favor of GJR-GARCH model. Whereas, the 

studies which report the superior predictive per-

formance of EGARCH model include Heynen 

and Kat (1994), Chong et al (1999) and  Loudon 

et al (2000). Briefly, the above mentioned stud-

ies support the significant role of asymmetries in 

volatility forecast. In the case of emerging equity 

markets, Gokcan (2000) reported that simple 

GARCH (1, 1) model performs significantly bet-

ter than EGARCH model, no matter even if the 

returns series are skewed as well. While forecast-

ing the stock market volatility through asym-

metric type EGACRH and the simple GARCH 

model, McMillan et al (2000) found that earlier 

does not outperform the later. Ng and McAleer 

study the forecasting ability of GARCH(1,1) and 

GJR-GARCH(1,1) type models and Risk Metri-

ces model by using the stock market volatility and 

report the  GARCH type models to superior over 

the later.

Although, existing literature on modeling 

and forecasting the stock market volatility pro-

vides us with a wide range of models, yet the se-

lection of a model on the optimum performance 

criterion is an astute one. Besides, toward the 

increasing accuracy of models, the literature is 

missing the potential contribution of distribu-

tional assumptions and volatility specifications. 

An empirical study exploring the significant con-

tribution of these ignored sources of information 

would be interesting, if any?

While evaluating the forecasting performance 

of different GARCH models, choosing a surro-

gate of true daily volatility is a practical chal-

lenge. A great number of studies have proxied the 

ex post latent volatility with squared daily returns 

Brooks & Persand (2002), Awartani and Corra-

di (2005) and Sadorsky (2006). Using a squared 

daily return as a proxy is likely to under estimate 

the forecasting performance of GARCH models 

since it suffers from daily market noise and may 

not be a true estimate of variance. Because of the 

practical difficulty to proximate the volatility, 

some studies advocate that inappropriate vola-

tility proxy (squared return) cause the GARCH 

models to generate inaccurate forecasts (Ander-

son and Bollerslev (1997, 1998) and McMillan 

and Speight (2004)).  An alternative suggested to 

avoid the incorrect conclusions is to use the high-

frequency data (intraday) to proxy the true daily 

volatility. A sum of squared intraday return, ob-

tained from intraday data may well proxy the daily 

volatility. The earlier studies using GARCH gene 

of models to forecast the volatility did not pay 

much attention to the distributional assumptions 
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and asymmetries, a potential source of improve-

ments in the forecasts. As an empirical effort, 

this study fills gap in literature by investigating 

the forecasting performance of distribution-type 

(GARCH-N,T,HT and SGT) and asymmetry-

type (GJR,E-GARCH) GARCH models.

This study is an empirical effort on Karachi 

Stock Exchange (KSE-100) index series over the 

sample period, 1 January 1998 to 30 September 

2008, consisting of 2,613 daily observations. 

The study focuses on the volatility/VaR fore-

casting performance between distribution-type 

and asymmetric-type GARCH models using 

a rolling-window technique. The sample size for 

each rolling-window was set to 1000 observa-

tions over the last 493 daily observations. Four 

different types of loss functions, namely MAE, 

MSE, MME(O) and MME(U) respectively have 

been calculated to compare the forecasting per-

formance of the aforementioned types of mod-

els.

Equity Market in Pakistan
Currently there are three stock exchanges in 

Pakistan, namely Karachi, Lahore and Islam-

abad stock exchange. Among these three the Ka-

rachi Stock Exchange (KSE) is the largest, old-

est (since 1947) and internationally recognized. 

The study focuses on the KSE only and utilizes 

the KSE-100 index for the empirical estimation 

and analysis. The KSE-100 was introduced with 

1000 base points in 1991 and includes those 100 

companies which cover almost 80% of market 

capitalization. The KSE observed a tremendous 

growth in terms of index, market capitalization 

and the number of companies listed. The govern-

ment’s liberalization and openness policy pro-

vided a further impetus to this ongoing growth 

and attracted a good number of foreign investors. 

The market not only grew locally but was also 

acknowledged globally as in 2002 the KSE was 

announced as the best performing market in the 

world by “Business Week”. This sound and fun-

damental supported growth provided the ground 

for the derivatives/futures trading and the govern-

ment launched Pakistan’s National Commodity 

Exchange Limited (NCEL) and introduced the 

limited/selected commodities futures contracts 

in 2003.   

By the October, 2004 KSE index reached up 

to the level of 5245.82 with the market capitaliza-

tion of US $ 25.23 billion. Year 2004 was the suc-

cessive 3rd year of best performance as the “US 

Today” also acknowledged the KSE as one of the 

best performing bourses in the world. The mar-

ket also grew in terms of number of companies 

listed as by the year 2004, there were 663 compa-

nies with a paid up capital of US $ 6.59 billion. 

The market was ranked 1st and 3rd in terms of turn-

over ratio in the year 2003 and 2006 respectively 

(Global Stock Markets Fact book, 2004, 2007). 

The years 2006 and 2007 proved to be very fru-

gal as the foreign buying kept on increasing and 

according to the State Bank of Pakistan (SBP) 

it reached up to US $ 523 in 2007. By the end 

of year 2007, the 754 companies had been listed 

with the market capitalization of US $ 52 billion 

and a paid up capital of US $ 8.27 billion. In the 

year 2008 the index peaked 15,737.32 with the 

market capitalization of US $ 23490665415.48. 

An increase of 7.4% in KSE-100 in the year 2008 

once again made KSE the best performer among 

the emerging markets (Gulf News).

Despite the strong growth and development 

of KSE, suddenly in the index started shrinking 

and dropped to the level of 5000 in year 2009, just 

in a period of year. This dramatic fall in the in-

dex put both of the policy makers and investors 

to calculate the possible fall and financial loss. 

Current study is an effort to provide the critical 

information to the investor in addition to a help 

to the policy makers.

Data and methodology

Data
The data illustrated in this study are daily 

price data of the Karachi Stock Exchange 100 In-

dex (KSE-100 Index) obtained from the website 

of www.brecoder.com. The sample period spans 

from 1 January 1998 to 30 September 2008 for 

a total of 2613 trading days, and includes high, low 

and closing prices1. The sample is divided into two 

parts, as shown in Fig. 1. The first 1196 observations 

(1 January 1998 to 31 December 2002) are used as 

the in-sample for estimation, while the remaining 

1417 observations (1 January 2003 to 30 September 

2008) are taken as the out-of-sample for forecast 

evaluation.

1 The daily high and low prices data is used to calculate 
the daily volatility proxy in our evaluation of volatility fore-
casts performance.
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The GARCH-based volatility models
Let r

t 
= 100(lnC

t 
- lnC

t-1
) is the daily return series, 

where C
t
 is the daily closing price on day t, and the 

set t 1−Ω contains the recorded returns up to time, 

t-1. The standard GARCH (1,1) specification is

given  below:

t 1t t t t t tr ,   z ,   z | ~ D(0,1)
−Ω

= μ + ε ε = σ (1)

2 2 2
t t 1 t 1− −σ = ω+αε +βσ (2)

where μ  and 
2
tσ  are the conditional mean and 

variance of the tr ; tε  is the innovation process; 

D(0,1) is a density function with a mean of zero;

and 0ω≥ , 0α ≥  and 0β ≥ . Furthermore, sta-

tionarity is achieved provided the 1α +β < .

The two GARCH specifications which can ca-

ter for asymmetric volatility dynamics are, Expo-

nential GARCH (EGARCH) proposed by Nelson 

(1991) and GJR-GARCH advocated by Glosten 

et al. (1993). With the same mean specification 

of that of the GARCH model, the conditional vari-

ance specification of the GJR-GARCH model is as 

below:

2 2 2 2
t t 1 t 1 t 1 t 1I− − − −σ = ω+αε +ψ ε +βσ (3)

where I
t-1

 is the dummy variable which captures 

the asymmetric effect, such that I
t-1 

= 1 if t 1 0−ε < , 

and I
t-1 

= 0 if t 1 0−ε ≥ . Thus, good news ( t 1 0−ε ≥ ) 

has an impact of α , and bad news ( t 1 0−ε < ) has an 

impact of α +ψ , the effect of bad news is even 

higher on conditional volatility if 0ψ > . Addition-

ally, assuming the nonnegativity condition for the pa-

rameters ω, α  and β  with the restriction of 

0.5 1α +β+ ψ < , whereas 0.5α + ψ  should still 

be positive. With these parametric constraints the 

conditional variance specification of EGARCH 

model is as below:

2 2t 1 t 1
t t 1

t 1 t 1

| | 2log( ) log( )− −
−

− −

⎡ ⎤ε εσ = ω+α ν + − +β σ⎢ ⎥σ σ π⎣ ⎦
(4)

In eq.(4): the parameter v gauges the asymmet-

ric (leverage) component of information, the nega-

tive shocks of an equal magnitude of that of positive 

shock have higher impact if 0ν < , significant α  

identify the volatility clustering effect. In particular, 

the logarithmic form of conditional variance con-

forms the nonnegativity of forecast variance irre-

spective of the estimated parameters are negative or 

positive.

Alternative errors distributions
From the seminal paper of Engle (1982), the 

z
t
 process in eq.(1) strictly follows a normal distri-

bution. We assume that z
t
 follow SGT distribution, 

as is evident from the prior literature most of the 

time empirical returns series are skewed, leptokur-

tic and have fat-tails. As suggested by Theodossiou 

(1998), this study employs the following SGT dis-

tribution for z
t
,

Figure. 1. Daily KSE-100 stock index price levels, 1998-2008

(N 1) /

t
t

t

| z |D(z ; N, , ) C 1
((N 1) / )(1 Sign(z ) )

− + κκ

κ κ

⎛ ⎞+ δκ λ = +⎜ ⎟+ κ + + δ λ θ⎝ ⎠
(5)
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where

( ) ( )1/ 1 1N 1 N 1C 0.5 B ,− κ − −+
κ κ κ= κ ⋅ ⋅ ⋅θ (6)

2 1/ 2(g )−θ = −ρ (7)

( ) ( ) ( )1 1/N N 1 N 11 22 B , B ,− κ+ −
κ κ κ κ κρ = λ ⋅ ⋅ ⋅ (8)

( ) ( ) ( )1 2/2 N N 1 N 2 31g (1 3 ) B , B ,− κ+ −
κ κ κ κ κ= + λ ⋅ ⋅ ⋅ (9)

δ = ρ⋅θ (10)

where tz ~ D(0,1) ; the parameter N measures 

the tail-thickness  with constraint N>2; the param-

eter κ observes the leptokurtosis with 0κ > ; the 

parameter λ  governs the skewness of the distribu-

tion with  | | 1λ < ; B( )•  and Sign are the beta and 

sign function respectively. The SGT distribution re-

duces to numerous widely used distributions for the 

different combinations of parametric values. Par-

ticularly, for 2κ =  and 0λ =  it reduces to student-

t distribution and for N = ∞ , 2κ =  and 0λ =  it

reduces to normal distribution. On the other hand 

recent articles, such as Politis (2004) and Hung et al. 

(2008) found some further evidences in the support 

of the heavy-tailed (HT) distributed errors. The HT 

distribution may better help to model the empirical 

distribution of asset returns series as they have fat-

tails most of the time. This study also adopts the HT 

distributed errors for the innovation process, z
t
, as 

follows:

( )2
t

2
0 t

z2 1.5
0 t 2(1 a z )

t 0 0.5 0.5
0 0

(1 a z ) exp
D(z ,a ,1)

2 ( (a ) ( a ))

−
+

− −

+ −
=

π Φ −Φ −
(11)

where 1 is S.D of z
t
, and Φ  denotes the  c.d.f 

of normal distribution. The shape parameter, a
0
, re-

flects the degree of the heavy tails with constraint 

0<a
0
<1. When a

0
 approaches to zero, the HT will 

become standard normal distribution, whereas in 

contrast to normal distribution it has thicker tails as
a

0
→1.

By placing various distributed errors (normal, 

student-t, SGT and HT) on the standard GARCH 

model, we then obtain four distribution-type vola-

tility models (GARCH–N, –T, –SGT, and –HT), 

and thus compare their forecasting performance 

with that of two asymmetry-type models (GJR-

GARCH and EGARCH models). Under such em-

pirical design, we would ascertain the crucial factors 

for improving daily volatility forecasts of KSE-100 

stock index between these two model categories.

The model parameter Θ  is obtained through

the use of the quasi maximum likelihood estima-

tion (QMLE) method, as suggested in Bollerslev 

and Wooldridge (1992), maximizing the following 

sample log-likelihood function:

T

t 1
LL( ) log D( )

=

Θ = Θ∑ (12)

where D( )Θ  is the likelihood function of the

corresponding volatility model.

Volatility proxy measure and evaluation criteria
In order to evaluate the accuracy of daily volatil-

ity forecasts, we have to compare the model-based 

volatility forecasts with the true volatility, which is 

unobserved. Parkinson (1980) introduced a daily 

high-low range as a so-called PK volatility proxy, 

assuming the daily prices have a Brownian motion 

pattern. Due to the unavailability of high frequency 

data of KSE, this study uses the PK as a proxy for 

true volatility. The classical range-based estimator, 

PK is as given below:

2 1 2
PK,t t t(4 ln 2) (100 ln(H / L ))−σ = × (13)

On a particular trading day t, H
t
 is the highest 

asset price and L
t
 is the lowest asset price.

The volatility forecast evaluation is performed 

using PK proxy in terms of MSE, MAE, MME(U), 

and MME(O), all of which are well-established 

within the literature and well-known. These fore-

casting error statistics are expressed as follows:

T
1 2 2

PK,t t
t 1

ˆMSE T ( )−

=

= σ −σ∑ (14)

T
1 2 2

PK,t t
t 1

ˆMAE T−
=

= σ −σ∑ (15)

T
1

t
t 1

MME(U) T UP−

=

= ∑
,

where

2 2 2 2
PK,t t PK,t t

2 2 0.5 2 2
t PK,t t PK,t t

2 2 2 2 2
PK,t t PK,t t

ˆ̂| | if 0
ˆ̂UP ( ) if 0 1
ˆ̂( ) if 1

⎧ σ −σ σ −σ ≤
⎪= σ −σ < σ −σ ≤⎨
⎪ σ −σ σ −σ >⎩

(16)

T
1

t
t 1

MME(O) T OP−

=

= ∑
,

where

2 2 2 2
PK,t t PK,t t

2 2 0.5 2 2
t PK,t t PK,t t

2 2 2 2 2
PK,t t PK,t t

ˆ̂| | if 0
ˆ̂OP | | if 1 0
ˆ̂( ) if 1

⎧ σ −σ σ −σ ≥
⎪= σ −σ − ≤ σ −σ <⎨
⎪ σ −σ σ −σ < −⎩

(17)
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where T denotes the number of forecast data 

points; 
2
PK,tσ  signifies the PK volatility on day t; 

2
tσ̂  

is the volatility forecast obtained from a model con-

sidered in this study for day t.

When a particular loss is smallest for a particular 

model, this does not guarantee its forecast superior-

ity to a set of rival models. We employ the superior 

prediction ability (SPA) test proposed by Hansen 

(2005) to reveal statistical significance of a bench-

mark model relative to its various competitors.

Consider K+1 different models M
k
 for k = 0, 1, 

…, K and which are discussed in previous section. 

For each model M
k
, we generate T volatility fore-

casts 
2
k,tσ̂  for t = 1, 2, …, T. Assuming that M

0
 is the 

benchmark model, the loss function relative to the 

benchmark model is defined as:

k,t 0,i,t k,i,tf L L= −
,

k = 1, 2, …, K; t = 1, 2, …, T (18)

where i = MSE, MAE, MME(U) or MME(O). 

Assuming that models can be ranked consistently, 

then k k,tE[f ]μ ≡  is well defined. When M
0
 outper-

forms all other models, we have kμ <0 for all models

k = 1, 2, …, K. Hence, the null hypothesis is that 

the benchmark model is not outperformed in terms 

of the specific loss function chosen:

kk 1, ,K
max 0
=
μ ≤

L
(19)

The corresponding SPA test statistic is given be-

low:

k

k 1,...,K
kk

T fSPA max
ˆ=

⋅=
ω

(20)

with 
2
kkω̂  as a consistent estimate of 

2
kkω , and 

where 
T1

k k,tt 1
f T f−

=
= ∑ , 

2
kkk T

lim var( T f )
→∞

ω = ⋅ . 

A consistent estimator of kkω  and the p-value of test 

statistic, SPA, can be obtained via a bootstrap pro-

cedure proposed in Politis and Romano (1994).

Value-at-Risk application
To analyze the improving degree of model per-

formance from risk management perspective, we 

conduct a reality check from a Value-at-Risk frame-

work. According to Jorion (2000), the daily VaR 

of a GARCH-type model can be calculated as:

t 0 t 0 tˆVaR ( ) F(z ; )α = μ + α ⋅σ (21)

where F(z
t
; �

0
) denotes the corresponding left 

quantile (�
0 
= 0.5%, 1% or 5%) of an assumed distri-

bution with specific parameters; and tσ̂  is the 

squared root of the daily conditional variance fore

cast from a given model made at time t.

In analyzing the performance of the above vola-

tility forecasting models for producing reasonable 

VaR estimates, the unconditional coverage test 

(LR
UC

) of Kupiec (1995) is the most popular back-

test among practitioners. Let 
t t 0t {r VaR ( )}BL I < α= , 

where I( )⋅  is the usual indicator function. Given the 

backtest interval T, then n
1
 (

T
tt 1

BL
=

=∑ ) is the 

number of the VaR violations (the number of days 

over a T period that the realized dollar loss was larg-

er than the VaR estimate), while n
1
/T is the violation 

frequency of that interval. Given the significance 

level 0α , the appropriate LR
UC

 statistic, under the 

null hypothesis that the expected violation frequen-

cy n
1
/T = 0α , equals

( ) ( )1 1 1 1n T n n T n
UC 0 0 1 1LR 2ln (1 ) 2 ln (n / T) (1 n / T)− −= − α −α + − (22)

which is asymptotically distributed as 
2 (1)χ .

Note that the unconditional coverage test can 

reject a model having either too high or too low vio-

lation frequency, but has been criticized for its in-

ability in response to serial correlation2. A dynamic 

quantile test (DQT) proposed by Engle and Man-

ganelli (2004), this test considers not only the failure 

rate but also the serial correlation of the VaR viola-

tions. To perform such test, Engle and Manganelli 

define the hit sequence:

t t 0t {r VaR ( )} 0Hit I < α= −α (23)

This sequence should be uncorrelated with past 

information and have a mean value of zero. To test 

for serial correlation in the hit sequence, Hit
t
 is 

regressed on five lags (days) and the current value 

of VaR. The DQT statistic is then computed as

0 0

ˆ̂ 'X 'XDQT
(1 )
θ θ=
α −α

(24)

where θ̂  is the OLS estimates and X the vector

 of explanatory variables. The dynamic quantile test

statistic, DQT, is asymptotically distributed as
2 (7)χ .

Results

Descriptive statistics of data
The basic descriptive of the KSE-100 stock in-

dex over the sample period under study are reported 

in Table 1.  As is evident from Panel A of Table 1, 

2 If the VaR violations are apparently serially correlated, 
then there will be clustered loss exceeding the VaR which are 
likely to result in model risk.
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the average daily returns over the sample period is 

positive while the standard deviation of the series is 

relatively higher. The returns series is characterized 

by skewness and kurtosis, skewed to the left as is 

evident from the significant negative value of skew-

ness and has a high peak as is evident from the high 

kurtosis. Furthermore, the significant JB-statistic 

confirms that the returns series is not normally dis-

tributed. The significant; negative skewness, high 

kurtosis and Jarque-Bera statistic reveal that the 

returns series is no-normal and has thicker tails as 

compared to standard normal distribution. More-

over, the serial dependence is observed through the 

Ljung-Box Q statistic, while the LM-test reveals 

significant ARCH effects. The preliminary analysis 

of KSE-100 returns series prompt the use, of flex-

ible distributions which cater for heavy tails (fat-

tails) and of models which account for asymme-

tries.  The results of PP (1998) and KPSS (1992) 

unit root tests of KSE-100 series are stated in the 

Panel B of Table 1, reported results do not support 

any evidence of non-stationarity in the returns se-

ries, specifying that no additional transformations 

are needed to model the KSE-100 return series. 

In the last, a significant Engle and Ng (1993) test 

statistic clearly reflects the asymmetric behavior 

of return’s volatility and which necessitates the 

use of more flexible models which are capable to 

accommodate for leverage effects of volatility dy-

namics.

Table 1. Summary statistics of the daily KSE-100 returns from 1 January 1998 to 30 September 2008

Panel A. Descriptive statistics

Mean % S.D. Skewness Kurtosis Jarque-Bera Q2(24) LM(24)

0.063 1.788 -0.352 c 5.254 c 3059.587 c 1134.017 c 452.330 c

Panel B. Unit root tests

PP Bandwidth KPSS Bandwidth

-45.100 c 13 0.185 7

Panel C. Engle and Ng (1993)’s sign test for asymmetric dynamics in volatility

Test statistic 

(~ 2χ (3))
8.452 b

Notes: 1. b and c denote significance at the 5% and 1% levels, respectively. 2. Jarque-Bera is the test statistic to test for the 

normality of a series. 3. Q2(24) is the  Ljung-Box Q test for 24th order serial correlation of the squared returns. 4. LM test is 

applied to test  for autocorrelation of the squared returns. 5. The bandwidth for the PP and KPSS test regressions are set using 

the Bartlett Kernel. A significant PP-test statistic rejects the null of non-stationarity and the critical values at 1%, 5% and 10% 

level of significance are -3.45, -2.864 and -2.568 respectively. A significant KPSS-test static rejects the null of stationarity and 

the critical values at 1%, 5% and 10% level of significance are 0.739,  0.463 and 0.347 respectively.

Estimation results
The estimation results3 of the various models 

for the KSE-100 stock index during the in-sample 

period are reported in Table 2. First of all, Panel A 

of the Table 2 shows that the parameter estimates 

in the conditional variance equation are found to 

be statistically significant at the 1% level. In addi-

tion, the value of (α+β) which varies from 0.901 

to 0.978 is close to unity for each of the distribu-

tion-type models, indicating the presence of strong 

volatility persistence in the KSE-100 returns series. 

Second, the asymmetric parameter ψ of the GJR-

GARCH model is positive and significant, while ν 

3 The parameters are estimated by QMLE and the 
BFGS optimization algorithm, using the econometric pack-
age of WinRATS 7.0.

is negative and also statistically significant (both 

of ψ and ν are even significant at 1% level) in the 

EGARCH model, confirming that the KSE stock 

market exhibits a leverage effect with bad news ex-

erting greater impact on KSE-100 returns series 

as compared to good news, even though the size 

(magnitude) of the shocks is the same. Third, the 

estimated shape parameters N, κ, λ, and a
0
, are 

all highly significant and meet their parameters’ 

constraints, reconfirming that the returns series 

of KSE-100 exhibits fat-tails and skewness and is 

leptokurtic. Finally, Panel B of the Table 2 reports 

the results of diagnostic tests. A comparison of log-

likelihood function values (FV) for all competing 

models specifies the superior in-sample goodness 

of fit of GARCH-SGT model over the other mod-
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els. In addition, Q2(24) computed on the squared 

standardized residuals for all models are insignifi-

cant. Such evidence necessitates the need of linear 

and non-linear GARCH specifications to purge 

away the effects of serial correlation in the condi-

tional variance equation.

Table 2. Estimation results

Panel A. Model estimates

Parameter GARCH-N GARCH-t GARCH-SGT GARCH-HT GJR-GARCH EGARCH

μ
0.046

[0.043]

0.078 b

[0.039]

0.034

[0.043]

0.078 b

[0.038]

0.019

[0.046]

0.002

[0.040]

ω
0.304 c

[0.013]

0.207 c

[0.026]

0.196 c

[0.055]

0.126 c

[0.034]

0.302 c

[0.053]

0.060 c

[0.003]

α
0.209 c

[0.009]

0.213 c

[0.016]

0.209 c

[0.039]

0.137 c

[0.025]

0.136 c

[0.027]

0.251 c

[0.012]

β
0.724 c

[0.005]

0.761 c

[0.010]

0.769 c

[0.035]

0.764 c

[0.035]

0.736 c

[0.029]

0.958 c

[0.002]

ψ - - - -
0.117 c

[0.036]
-

ν - - - - -
-0.138 c

[0.038]

N
∞ 4.409 c

[0.371]

4.213 c

[0.867]
-

∞ ∞

κ 2 2
2.076 c

[0.276]
-

2 2

λ 0 0
-0.082 b

[0.038]
-

0 0

a
0

- - -
0.092 c

[0.013]
- -

Panel B. Diagnostic tests

Q2(24) 23.335   29.914   32.679   31.329  20.113  11.819

FV -2377.142 -2305.839 -2303.821 -2305.920 -2372.637 -2356.461

Notes: 1. N, κ  and λ  are specific parameters of the SGT-distribution, where N and κ  are positive kurtosis parameters 

controlling the tails and height of the density with N>2 and κ >0, respectively; λ  denotes the skewness parameter obeying the 

constraint | λ |<1. Moreover, a0 denotes shape parameter of the HT-distribution governing the fat-tails of the densities with 

constraint 0<a0<1. 2. Standard errors are in brackets below corresponding parameter estimates. 3. a, b and c indicate signifi-

cance at the 10%, 5% and 1% levels, respectively. 4. Q2(24) represents the Ljung-Box Q statistic of order 24 computed on the 

squared standardized residuals. 5. FV refers to the log-likelihood function value.

Analysis for volatility forecasting performance 
(2012-01-02)

To examine volatility forecasting performance, 

the forecast evaluation is performed using PK proxy 

measure based on both symmetric (MAE, MSE) 

and asymmetric (MME) loss criteria. In Table 3, 

column 2 reports the actual forecast error and col-

umn 3 reports the rank order of the included mod-

els. The MAE, MSE and MME(O) statistics all 

indicate that the GARCH-HT model yields the 

most accurate volatility forecasts, while EGARCH, 

GARCH-N, GJR-GARCH, GARCH-SGT mod-

els yield the volatility forecast from second to fifth 

place respectively. The GARCH-t model performs 

the worst, produces the largest/greatest forecasting 

error. If under-predictions are heavily penalized, the 

MME(U) statistic reveals that the GARCH-SGT 

and GARCH-t models provide the best and second 

best forecasts, respectively, while the remaining four 

models just perform marginally worse than the best 

model. 

To further check the reliability of forecasting re-

sults and their statistical significance, the SPA test 

results are reported and listed in the last two columns 
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of Table 3. The SPA test statistics (SPA
c
 and SPA

l
) 

based on MAE, MSE and MME(O) all show that 

the GARCH-HT model is significantly superior to 

its competitors since it always produces higher con-

sistent/liberal p-value than alternatives. As for the 

forecasting results obtained from the MME(U) cri-

terion, the forecasting results are mixed. Specifical-

ly, when the GARCH-HT (EGARCH) is selected as 

the benchmark, the null hypothesis is significantly 

rejected, indicating that there exists a better model 

that outperforms the GARCH-HT (EGARCH) 

model. 

Table 3. Out-of-sample volatility forecasting performance and SPA test results

Benchmark (M0) Value Rank SPAc SPAl

Panel A. Model performance based on MAE
GARCH-N 1.554 3 0.000 0.000
GARCH-t 1.717 6 0.000 0.000

GARCH-HT 1.209 1 0.495 0.495
GARCH-SGT 1.663 5 0.000 0.000
GJR-GARCH 1.571 4 0.000 0.000

EGARCH 1.534 2 0.000 0.000
Panel B. Model performance based on MSE

GARCH-N 5.347 3 0.000 0.000
GARCH-t 7.249 6 0.000 0.000

 GARCH-HT 4.061 1 0.452 0.452
GARCH-SGT 6.639 5 0.000 0.000
GJR-GARCH 5.366 4 0.000 0.000

EGARCH 4.753 2 0.001 0.001
Panel C. Model performance based on MME(O)

GARCH-N 4.560 3 0.000 0.000
GARCH-t 6.674 6 0.000 0.000

GARCH-HT 2.902 1 0.444 0.444
GARCH-SGT 6.027 5 0.000 0.000
GJR-GARCH 4.641 4 0.000 0.000

EGARCH 3.921 2 0.000 0.000
Panel D. Model performance based on MME(U)

GARCH-N 2.508 4 0.248 0.153
GARCH-t 2.462 2 0.202 0.159

GARCH-HT 2.611 6 0.089 0.089
GARCH-SGT 2.446 1 0.990 0.656
GJR-GARCH 2.464 3 0.754 0.362

EGARCH 2.534 5 0.100 0.066

Notes: 1. The true volatility is proxied by the daily high-low price range suggested by Parkinson (1980). 2. SPAc and SPAl 

denote the reality check p-values of the Hansen’s consistent test and Hansen’s liberal test, respectively. The null hypothesis is 

that none of the models is better than the benchmark. 3. The number of bootstrap replications to calculate the p-values is 1000 

and the dependency parameter q is 0.5.

The descriptive statistics of the shape parame-

ters N, κ , λ  and a
0
 for the KSE-100 return series 

during rolling period are shown in Table 4. Immedi-

ately observable from these statistics are that, each 

specific shape parameter for the rolling period

meets its parameter constraint. On the one hand, 

the minimum and maximum values for the de-

gree of freedom parameter N are 4.389 and 5.999,

respectively. On the other hand, the parameters N, 

κ , and λ , which respectively range from 4.213 to 

10.080, 1.753 to 2.294, and -0.214 and -0.053, indi-

cate that the KSE-100 returns series is heavy-
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Table 4. Descriptive statistics for specified shape parameters in rolling window period

Parameter Mean S.D. Min Max

Panel A. t-distribution

N 5.076 0.406 4.389 5.999

Panel B. SGT-distribution

N 5.478 1.249 4.213 10.080

κ 2.031 0.118 1.753 2.294

λ -0.127 0.045 -0.214 -0.053

Panel C. HT-distribution

a
0

0.082 0.006 0.069 0.096

Notes: 1. N, κ  and λ  are specific parameters of the SGT-distribution, where N and κ  are positive kurtosis parameters 

controlling the tails and height of the density with N>2 and κ >0, respectively; λ  denotes the skewness parameter obeying the 

constraint | λ |<1. 2. a0 denotes shape parameter of the HT-distribution governing the fat-tails of the densities with constraint 

0<a0<1.

Table 5. Out-of-sample VaR forecasting performance

Criterion GARCH-N GARCH-t GARCH-HT GARCH-SGT GJR-GARCH EGARCH

Panel A. 95% confidence level

LR
UC

0.024 0.000 0.000 0.056 0.056 0.033

DQT 0.000 0.000 0.000 0.036 0.004 0.007

Panel B. 99% confidence level

LR
UC

0.000 0.088 0.000 0.751 0.000 0.002

DQT 0.000 0.012 0.000 0.804 0.000 0.001

Panel C. 99.5% confidence level

LR
UC

0.000 0.735 0.000 0.406 0.001 0.003

DQT 0.000 0.725 0.000 0.861 0.000 0.011

Notes: 1. This table shows asymptotic P-values for the unconditional coverage test (LRUC) and dynamic quantile test 

(DQT) statistics for the various VaR models under 95%, 99% and 99.5% confidence levels. 2. The LRUC and DQT statistics

are asymptotically distributed 
2 (1)χ  and 

2 (7)χ , respectively. 3. The cells in boldface indicate rejection of the null hypothesis 

of correct VaR estimates at the 10% significance level.

tailed, leptokurtic, and has a leftwards skew. 

In addition, as shown in Panel C of Table 4, the 

estimated value for the shape parameter, a
0
, 

of HT distribution ranges between 0.069 and 

0.096, indicating that the returns series displays 

evidence of fat-tails.

Application to risk management practice (2012-
01-02)

In this section, we employ the daily volatility 

forecasts obtained by the GARCH-N, GARCH-

t, GARCH-HT, GARCH-SGT, GJR-GARCH, 

and EGARCH models to further examine their 

forecasting performance in the context of a VaR 

analysis. Table 5 presents the summary results 

of the out-of-sample VaR forecasts using uncon-

ditional coverage test (LR
UC

) and dynamic quan-

tile test (DQT) statistics under 95%, 99%, and 

99.5% confidence levels. 

First, we find that all models considered have 

been rejected by the LR
UC

 test at the 95% confi-

dence level, indicating that each model has a sta-

tistically significant higher frequency of excep-

tions than allowed for at the 10% significant level. 

Second, the LR
UC

 test statistics in Panels B and 

C of Table 5 are all statistically significant, ex-

cept for the GARCH-SGT at the 99% confidence 
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level and the GARCH-t and GARCH-SGT at the 

99.5% one. That is, the GARCH-SGT model can 

pass the unconditional coverage test at the 99% 

confidence level, while the empirical failure rate 

generated by either the GARCH-t or GARCH-

SGT model is statistically consistent with the pre-

scribed one at the 99.5% confidence level. 

In addition to the unconditional cover-

age test, we employ the DQT test of Engle and 

Manganelli (2004) for further performance com-

parison. The DQT statistics in Panels A and B 

of Table 5 indicate that all models reject the null 

hypothesis of providing correct 5%, and 1% VaR 

estimates, except for the GARCH-SGT model at 

the 99% confidence level. As for the 99.5% con-

fidence level situation, we find evidence that only 

the GARCH-t and GARCH-SGT models do not 

reject the null hypothesis of correct 0.5% VaR es-

timates. 

From the previous results, it is quite evident 

that the GARCH model incorporated with the 

student-t- and SGT-distributed innovations are 

adequate in predicting daily VaRs of KSE-100 

stock index under high confidence level.

Conclusions 

In this article we empirically compare the 

daily volatility forecasting performance of distri-

bution-type GARCH models with those of asym-

metric-type ones for KSE-100 stock index over 

the period 1 January 1998 to 30 September 2008.

The descriptive statistics reveal that the re-

turns series is negatively skewed, having fat tails 

with high kurtosis. Either the PP (1998) or KPSS 

(1992) test does not support the presence of unit 

root in series. In addition, the estimated con-

ditional variance equations indicate the strong 

volatility persistence, while the asymmetric 

GJR-GARCH and EGARCH models specify the 

leverage effects in the returns series.

While examining the volatility performance 

of different models used in this study for both 

symmetric and asymmetric loss criteria, some 

important findings are observed. First, for MAE, 

MSE and MME(O) loss criteria the GARH-HT 

model yields the most accurate volatility fore-

casts. Second, for MME(U) loss criteria it is the 

GARCH-SGT which performs better than the 

other competing models. Moreover to check the 

robustness of the forecasting results, the SPA test 

results based on MAE, MSE and MME(O) all 

show that the GARCH-HT model is significantly 

superior to its competitors.

Finally, we apply the daily volatility forecasts 

generated by the various models to evaluate their 

VaR performance relating to KSE-100 returns as 

a reality check. The LR
UC

 and DQT test results 

under different confidence levels reveal that only 

the GARCH-t and GARCH-SGT are the appro-

priate models to predict the daily VaRs of KSE-

100 stock index under high confidence level.
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